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ABSTRACT. A set of 40 flavonoids, downloaded from the PubChem database, 
was submitted to a qsar study by using an alignment procedure of the 
molecules over the hypermolecule, that mimics the investigated correlational 
space, within the correlation weighting analysis. The best models have been 
validated in the external test set and in a new version of validation/prediction 
by using similarity clusters.  
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1. INTRODUCTION 

Flavonoids are phenolic substances with a low molecular weight and 
they are abundant in plant tissues, fruits (particularly in the skin) [1,2]. In the 
human body they manifest a lot of biological properties, such as antioxidants, 
antiallergenic, antibacterial, antifungal, antiviral and anticarcinogenic agents. 
These characteristics confer to flavonoids pharmacological properties 
useful in the treatment of diseases, ranging from allergies, bacterial and 
viral infectious processes to those of greater risk like the coronary diseases, 
cancer and HIV [3-4]. 

In the past half century, the use of QSAR (quantitative-structure-
activity-relationship, one of the well-developed areas in computational chemistry) 
[5] has become increasingly helpful in understanding many aspects of 
chemical–biological interactions in drug and pesticide research, particularly 
enzyme functions, as well as in the areas of toxicology [6-8].  

The parameter correlated in this paper is logP, the (calculated) 
partition coefficient in octanol/water, a measure of hydrophobicity that gives 
information about the transport of a drug through the cell membranes to the 
biological receptor [9]. 
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Any similarity measure has three principal components: (i) the 
representation that is used to describe each of the structures taken in the 
work; (ii) the weighting scheme, used to assign weights to different parts of 
the structure representation that reflect their relative degrees of importance; 
and (iii) the similarity coefficient, used to quantify the degree of resemblance 
between two suitably weighted representations [10].There is a variety of 
ways for computing the similarity score;it is recognized that there is no a single 
similarity measure that will provide optimal screening in all circumstances 
[11−13]. 

2D similarity approaches can be defined as simple methods since they 
employ topological measurements derived from molecular graphs, but many 
times they show inconsistencies for the appropriate representation of QSAR/ 
QSPR predictive spaces [14].  

Correlation weighting was previously discussed by Toropov and 
Toropova [15,16] 

Graph theoretical descriptors, invariants up to isomorphism, also 
called topological indices [17-19] are used as predictor variables in qsar 
studies. Within this paper we used the indices generated by the TopoCluj 
software [20]. 

 
 

2. DATA SET 

A set of 40 molecular structures, belonging to the class of flavonoids, 
have been downloaded from the database Pubchem [21] (Table 1), together 
with their log P. The set was split in the training set and test set (25 and 15 
molecules, respectively). The structures have been optimized by HyperChem 
software, at molecular mechanics MM+ and semi-empirical PM3 levels of 
theory. 
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Table 1. The set of flavonoids, taken from PubChem database [21]. 
 

 Substituents log P Substituents log P  
1 R2-NH2 3.4 2 R1-H2, R3-OH, R8-NH2 2.9 
3 R1-H2, R8-NH2 2.5 4 R2-NH2, R6-NH2 2.4 
5 R2-NH2, R8-N(Me)2 2.2 6 R2-NH2, R8-N(Et)2 3 
7 R3-NH2 3.3 8 R2-NH2, R8-NH(Et) 2.5 
9 R4-NH2 3.3 10 R1-NH2 3.1 
11 R1-NH2, R3-NH2 2.4 12 R2-OH, R5-NH2 2.7 
13 R3-NH2, R4-OH, R5-NH2 1.5 14 R1-NH2, R6-NH2 2.4 
15 R6-NH2, R7-Me 3.2 16 R2-OH, R4-OH, R7-NH2 , R7-OMe 1.4 
17 R2-OH, R3-NH2, R4-OH 1.4 18 R2-OH, R5-NH2, R8-NH2 1.1 
19 R2-OH, R4-OH, R7-NH2 , R8-OH 1.1 20 R4-OH, R5-NH2 , R8-NH2 1.8 
21 R3-OH, R8-NH2 2.9 22 R3-NH2, R8-N(Me)2 3 
23 R3-OMe, R8-NH2 2.8 24 R7-OMe, R8-NH2 2.8 
25 R3-Me, R4-Me, R8-N(Me)2 4.4 26 R2-NH2, R8-OH 1.8 
27 R7-NH2, R8-NH2 2.2 28 R2-NH2, R8-NH(Me) 2.1 
29 R2-NH2, R6-OH, R8-OH 2.3 30 R3-Me, R8-N(Me)2 4 
31 R2-NH2, R6-N(Me)2 3.2 32 R2-NH2, R6-NH(Me) 3 
33 R2-NH2, R6-OH  2.7 34 R2-NH2, R6-OMe 3 
35 R2-NH2, R5-OH, R6-NH2 2 36 R2-NH(Me), R6-N(Me)2 3.8 
37 R2-NH(Me), R8-N(Me)2 2.9 38 R2-NH2, R8-NH2 1.4 
39 R2-NH2, R7-OH 2.7 40 R2-NH2, R6-OH, R8-NH2 2 
 
 

3. METHOD 

In performing the QSAR, we followed an algorithm based on the 
alignment of molecules over a hypermolecule [22] and correlation weighting 
analysis [15,16]. This algorithm includes the main steps: (a) download from 
PubChem (or other public domain) a dataset of molecules and optimize them at 
a choice level of theory; (b) compute global and local quantum and/or topological 
descriptors; (c) build up the hypermolecule of the set by superimposing the 
common and distinct features of all the molecules; (d) split the set of molecules 
in the learning and test sets, respectively; (e) write the binary vecteors, with 1 if 
there exists a fragment in the current molecule in a given position of the 
hypermolecule and 0 otherwise; (f) weight the binary vectors by various physico-
chemical or mathematical local properties; (g) data reduction: discard the non-
variant descriptors and (statistically) non-significant descriptors Xj over the jth 
position of the hypermolecule; (h) make correlation weighting (including all 
significant positions j of the hypermolecule) and generate correlation weights 
CDij (as product of local descriptors – e.g. charge, mass, etc. with the 
regression coefficients for the significant positions of the hypermolecule), next 
sum them to give a global descriptor i ijj

SD CD ; (i) models generation (i.e. 

QSPR/QSAR equations) by using various global descriptors; (j) validation of 
the model, either by the leave-one-out LOO (or similar procedures) or by the 
(external) test set; (k) validation by clusters of similarity. 
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3.1. Alignment over the hypermolecule 
 
On the set of 40 flavonoids, a Hypermolecule [22] was built up, as a 

union of the common and distinct substructures over all the molecules in the 
set (Figure 1). Molecules were aligned over the hypermolecule positions and 
binary vectors were constructed (see Table 2, somesignificant positions), with 
1 when in the current molecule there exists a corresponding atom and zero, 
otherwise.Next, the values 1 are replaced with local characteristics: partial 
charges, mass fragments or local topological descriptors. We used here the 
mass fragments in building the weighted vector for every molecule. 

 

 
 
Table 2. Binary vectors cf. the hypermolecule, for the 40 flavonoids. 

 
Molecule 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 
2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 1 1 0 0 0 0 0 1 0 0 0 0 0 0 
5 1 0 0 0 0 0 0 1 0 0 0 0 0 0 
6 1 0 0 0 0 0 0 1 0 0 0 0 0 0 
7 1 0 0 0 0 0 0 0 1 0 0 0 0 0 
8 1 0 0 0 0 0 0 1 0 0 0 0 0 0 
9 1 0 0 0 0 0 0 0 0 1 0 0 0 0 
10 1 0 0 0 0 0 1 0 0 0 0 0 0 0 
11 1 0 0 0 0 0 1 0 1 0 0 0 0 0 
12 1 0 0 0 0 0 0 0 0 0 1 0 0 0 
13 1 0 0 0 0 0 0 0 1 0 1 0 0 0 
14 1 0 0 0 0 0 1 0 0 0 0 0 0 0 
15 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
16 1 0 0 0 0 1 0 0 0 0 0 0 0 0 
17 1 0 0 0 0 0 0 0 1 0 0 0 0 0 
18 1 0 0 0 0 0 0 0 0 0 1 0 0 0 
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Molecule 17 18 19 20 21 22 23 24 25 26 27 28 29 30 
19 1 0 0 0 1 1 0 0 0 0 0 0 0 0 
20 1 0 0 0 0 0 0 0 0 0 1 0 0 0 
21 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
22 1 0 0 0 0 0 0 0 1 0 0 0 0 0 
23 1 0 0 0 0 0 0 0 0 0 0 0 1 0 
24 1 0 0 0 0 0 0 0 0 0 0 1 0 0 
25 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
26 1 0 0 0 0 1 0 1 0 0 0 0 0 0 
27 1 0 0 0 1 0 0 0 0 0 0 0 0 0 
28 1 0 0 0 0 0 0 1 0 0 0 0 0 0 
29 1 0 0 0 0 1 0 1 0 0 0 0 0 0 
30 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
31 1 1 1 1 0 0 0 1 0 0 0 0 0 0 
32 1 1 1 0 0 0 0 1 0 0 0 0 0 0 
33 1 0 0 0 0 0 0 1 0 0 0 0 0 0 
34 1 0 1 0 0 0 0 1 0 0 0 0 0 0 
35 1 1 0 0 0 0 0 1 0 0 0 0 0 0 
36 1 1 1 0 0 0 0 1 0 0 0 0 0 1 
37 1 0 0 0 0 0 0 1 0 0 0 0 0 1 
38 1 0 0 0 0 0 0 1 0 0 0 0 0 0 
39 1 0 0 0 0 0 0 1 0 0 0 0 0 0 
40 1 0 0 0 0 0 0 1 0 0 0 0 0 0 

 
For all the structures, topological indices (including distance, detour 

and Cluj indices) have been computed (Table 3) by using TOPOCLUJ 
software [20]. 
 

Table 3. Global descriptors and log P for the set of flavonoids in Table 1 
 

Structure IE max IP max HOMO SD log P 

1 99 606.5 -8.584 0.708 3.4 
2 119 712.5 -8.761 0.226 2.9 
3 103.5 627 -8.743 -0.160 2.5 
4 125 769.5 16.020 -0.257 2.4 
5 179 1063 -5.395 -0.450 2.2 
6 263 1524 -4.962 0.322 3 
7 99 594.5 -9.527 0.611 3.3 
8 188 1119 -5.426 -0.160 2.5 
9 99 591 -9.464 0.612 3.3 
10 107 617.5 -9.687 0.419 3.1 
11 122 696.5 -7.067 -0.257 2.4 
12 114 693 -6.823 0.028 2.7 
13 131 766.5 -9.584 -1.151 1.5 
14 134 783 -7.762 -0.257 2.4 
15 129 799.5 -9.175 0.515 3.2 
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Structure IE max IP max HOMO SD log P 

16 192 1159 -7.423 -0.319 1.4 
17 135.5 783 -7.809 -1.411 1.4 
18 135.5 823.5 -6.096 -1.313 1.1 
19 158.5 972 -9.275 -0.572 1.1 
20 136 807 -8.829 -0.855 1.8 
21 119 712.5 -8.753 0.226 2.9 
22 179 1044 -8.978 0.322 3 
23 149 856.5 -6.833 0.129 2.8 
24 153 946 -6.756 0.129 2.8 
25 200 1154.5 -7.090 1.932 4.4 
26 119 726.5 -8.270 0.147 1.8 
27 123.5 760.5 -9.031 -0.450 2.2 
28 148.5 894 -5.375 -0.546 2.1 
29 146 887 -7.361 0.603 2.3 
30 179 1044 -7.644 1.287 4 
31 197 1216 -7.864 0.648 3.2 
32 160.5 992 -8.134 0.405 3 
33 125 769.5 -8.194 0.033 2.7 
34 160.5 992 -8.244 0.405 3 
35 142 871 -8.075 -0.494 2 
36 234.5 1447.5 -7.262 1.283 3.8 
37 215 1273 -5.723 0.206 2.9 
38 119 726.5 -8.302 -1.222 1.4 
39 119 750 -9.419 0.033 2.7 
40 146 887 -7.380 -0.643 2 

 
 

3.2. Data reduction and correlation weighting 
 
In the step of data reduction, all the descriptors with the variance 

Var<30% and those with intercorrelation larger than 0.80 have been 
discarded.Correlation weighting was performed on all the positions in the 
hypermolecule, nest the statistically non-significant positions were discarded. 
In case of the significant positions, the correlating coefficients are used to 
compose new local descriptors, by multiplying with the local weighted vectors 
(thus resulting new weighted vectors). Next, the local correlating descriptors 
are summed to give a global descriptor, denoted SD. This new descriptor, that 
is a linear combination of the local correlating descriptors for the significant 
positions in the hypermolecule (i.e. H13, H14, H19, H22, H27, H30 – Table 
4),will be used as the basis of modeling log P (see below). 
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Table 4. Correlation weighting descriptors (see text) 
 

Mi H13 H14 H19 H22 H27 H30 SDi 

1 2.119 -1.411 0 0 0 0 0.708 
2 0.675 -0.449 0 0 0 0 0.226 
3 -0.479 0.319 0 0 0 0 -0.160 
4 -0.769 0.512 0 0 0 0 -0.257 
5 -1.346 0.896 0 0 0 0 -0.450 
6 0.964 -0.642 0 0 0 0 0.322 
7 1.830 -1.218 0 0 0 0 0.612 
8 -0.480 0.319 0 0 0 0 -0.160 
9 1.830 -1.218 0 0 0 0 0.612 
10 1.253 -0.834 0 0 0 0 0.419 
11 -0.769 0.512 0 0 0 0 -0.257 
12 0.090 -0.065 0 0 0.003 0 0.028 
13 -3.107 2.068 0 0 -0.113 0 -1.151 
14 -0.769 0.512 0 0 0 0 -0.257 
15 1.541 -1.026 0 0 0 0 0.515 
16 -0.866 0.532 0 0.015 0 0 -0.319 
17 -3.656 2.245 0 0 0 0 -1.411 
18 -4.172 3.011 0 0 -0.151 0 -1.313 
19 -1.557 0.956 0 0.028 0 0 -0.572 
20 -2.307 1.536 0 0 -0.084 0 -0.855 
21 0.675 -0.449 0 0 0 0 0.226 
22 0.964 -0.642 0 0 0 0 0.322 
23 0.386 -0.257 0 0 0 0 0.129 
24 0.386 -0.257 0 0 0 0 0.129 
25 5.006 -3.075 0 0 0 0 1.932 
26 0.464 -0.309 0 -0.008 0 0 0.147 
27 -1.346 0.896 0 0 0 0 -0.450 
28 -1.635 1.088 0 0 0 0 -0.546 
29 1.908 -1.270 0 -0.035 0 0 0.603 
30 3.851 -2.564 0 0 0 0 1.287 
31 1.541 -1.026 0.133 0 0 0 0.648 
32 0.964 -0.642 0.083 0 0 0 0.405 
33 0.098 -0.065 0 0 0 0 0.033 
34 0.964 -0.642 0.083 0 0 0 0.405 
35 -1.775 1.281 0 0 0 0 -0.494 
36 3.274 -2.179 0.282 0 0 -0.094 1.283 
37 0.675 -0.449 0 0 0 -0.019 0.206 
38 -3.656 2.434 0 0 0 0 -1.222 
39 0.098 -0.065 0 0 0 0 0.033 
40 -1.924 1.281 0 0 0 0 -0.643 
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4. RESULTS AND DISCUSSION 
 

4.1. QSAR models 
 

The models were performed on the training set (the first 25 structures 
in Table 1) and the best results are listed below and in Table 5. The number of 
descriptors was limited to four, to fulfill the considerations of Topliss and 
Costello [23]. 

(i) Monovariate regression 
log 2.581 1.052P SD    

(ii) Bivariate regression 
log 3.266 1.069 0.001 3P SD D D      

(iii) Three-variate regression 

maxlog 5.099 0.934 0.003 0.017P SD Detour IE        
(iv) Four-variate regression 

max maxlog 4.995 0.932 0.042 0.002 0.005P SD Detour IE IP          
 

Table 5. Best models for log P in the training set of flavonoids in Table 1. 
 

 Descriptors R2 Adjust. R2 St. Error F 

1 SD 0.884 0.879 0.279 176.25 
2 N (no. heavy atoms) 0.041 0.001 0.804 0.991 
3 Detour 0.034 0.008 0.807 0.809 
4 IE max 0.001 0.043 0.821 0.018 

5 SD, D3D 0.914 0.906 0.246 116.691 
6 SD, Detour 0.906 0.897 0.258 105.648 
7 SD, Distance 0.901 0.892 0.263 100.461 
8 SD, IP max 0.898 0.889 0.268 96.983 
9 SD, IE max 0.895 0.886 0.272 94.014 

10 SD, Detour, IE max 0.937 0.929 0.215 105.092 
11 SD, IE max, D3D 0.932 0.923 0.223 96.497 
12 SD, Detour, D3D 0.920 0.909 0.242 80.897 
13 SD, IE max, IP max 0.918 0.906 0.245 78.592 
14 SD, Distance, IE max 0.914 0.902 0.252 74.255 
15 SD, Detour, HOMO 0.907 0.894 0.262 68.326 
16 SD, Distance, HOMO 0.902 0.888 0.268 64.692 

17 SD, Detour, IE max, IP max 0.950 0.941 0.195 96.555 
18 SD, D3D, Detour, IE max 0.939 0.927 0.217 77.033 
19 SD, IE max, IP max, HOMO 0.923 0.908 0.243 60.388 
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 One can see that, in monovariate regression, the usual alignment free 
descriptors, i.e. topological indices (Table 5, entries 2 to 4) correlate badly with 
log P; the only suitable descriptor is SD, that fits in the statistical hyperspace 
by an alignment procedure on the hypermolecule. 
 
 

4.2. Model Validation 
 
(a) External Validation 
 
The values log P for the test set of flavonoids (Table 1, last 15 

structures) were calculated by using the best equation in Table 5, entry 17. 
Data are listed in Table 6 and the monovariate correlation:  

.log 0.054 1.004 log calcP P   ; n=15; R2=0.768; s=0.366; F=42.956 

is plotted in Figure 2. 
 
 

Table 6. Calculated values of log P for the 
molecules in the test set(Table 1) 

 

Molecules log P calc. log P 

26 2.671 1.8 

27 2.164 2.2 

28 1.987 2.1 

29 2.959 2.3 

30 3.807 4 

31 2.947 3.2 

32 2.796 3 

33 2.554 2.7 

34 2.796 3 

35 1.817 2 

36 3.410 3.8 

37 2.604 2.9 

38 1.395 1.4 

39 2.425 2.7 

40 1.798 2 
 

 

 
 

Figure 2. The plot Log P vs. log P calc.  
for the test set (external validation) 
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Similarity Cluster Validation 
 
Validation can be performed by calculating log P for the molecules in 

the test set with equations learned on clusters of similarity: each of the 15 
molecules is the leader in its own cluster, selected by (2D) similarity among the 
25 structures of the initial learning set. The values log P calc. for each of the 15 
molecules in the test set were computed by 15 new equations (the leader 
being left out) with the same descriptors as in eq. 17, Table5. Data are listed in 
Table 7 and the monovariate correlation: .log 0.005 0.98 log calcP P    ; n=15; 
R2=0.951; s=0.168; F= 252.005 is plotted in Figure 3. 

One can see that the prediction of log P by the similarity clusters is far 
better than that obtained in the external validation, even in the learning set 
(R2=0.951 vs 0.950; s=0.168 vs 0.195 and F=252.005 vs 96.555).  
 
 

Table 7. Calculated 
values of log P  

by similarity clusters,  
for themolecules  

in the test set  

 

Molecules log 
Pcalc. 

log P 

26 2.246 1.8 

27 2.212 2.2 

28 2.037 2.1 

29 2.614 2.3 

30 3.902 4 

31 3.325 3.2 

32 3.086 3 

33 2.701 2.7 

34 2.957 3 

35 2.157 2 

36 3.995 3.8 

37 2.801 2.9 

38 1.319 1.4 

39 2.702 2.7 

40 1.923 2 

 
 

 
 

Figure 3. The plot Log P vs. log P calc.  
by similarity clusters 
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The explication of this exceptional result is that, by clustering, one 
obtains a set of quasi-congeners, thus making possible the basic paradigm 
of QSAR: similar structures show similar properties. The cluster populations 
can be varied to obtain the best estimation within each cluster and thus a 
best prediction. This represents a new correlating procedure, we call “direct 
prediction” and it can be performed even without previous learning steps.  

 
CONCLUSIONS 

 
A set of 40 flavonoids, downloaded from the PubChem database, was 

submitted to a qsar study by using the hypermolecule concept, in a procedure 
similar to that of the „alignment” of drug molecules to the biological receptors. 
In fact, the hypermolecule mimics the investigated correlational space, within 
the correlation weighting analysis. The best models have been validated in the 
external test set and in a new version of validation/prediction by using clusters 
of similarity, that favorise apparition of „quasi-congeneric” state, mandatory for 
a best correlation.  
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