STUDIA UNIVERSITATIS BABEŞ-BOLYAI

CHEMIA

1 1989

CLUJ-NAPOCA

REDACTOR-ŞEF: Prof. A. NEGUCIOIU

REDACTORI-ŞEFI ADJUNCȚI: Prof. A. PÁL, conf. N. EDROIU, conf. L. GHERGARI

COMITETUL DE REDACȚIE CHIMIE: Prof. E. CHIFU, prof. I. HAIDUC. (redactor responsabil), prof. L. KÉKEDY, prof. GH. MARCU, prof. L. ONICIU, conf. S. MAGER, conf. E. VARGHA (secretar de redacție)

TEHNOREDACTOR : C. Tomoaia-COTIŞEL

12

STUDIA UNIVERSITATIS BABES-BOLYAI

CHEMIA

1

Redacția: 3400 CLUJ-NAPOCA, Str. M. Kogălniceanu 1 • Telefon 16101

SUMAR – CONTENTS – SOMMAIRE – INHALT

I. SIMINICEANU, I. TODEA, M. STANCA, AL. POP, Die Oxidation des Äthens zu Äthy- lenoxid mit Sauerstoff, auf Silberkatalysatoren (II). Mathematisches Modell des Reaktors und die Simulation des Prozesses ● Oxidation of Etylene to Ethyleneoxide on Silver Catalyst. The Mathematic Model of the Reactor and the Simulation of the Process on a Computer	3
M. VAGAONESCU, FR. HODOŞAN, S. MAGER, L. STOICESCU, I. OPREANU, N Acyl-	
derivatives of Anesthesine CS. VÁRHELYI, I. GÁNESCU, Untersuchung über einige Ammoniumsalze der Wasserstoff-	12
Hexaselenocyanato-Platin(IV)-Saure Study on Some Ammonium Saits of the	15
R. POPESCU, I. OPREAN, N. PALIBRODA, Z. MOLDOVAN, Étude en spéctrometrie de masse des arylsulphonamides thiophosphororganiques II. Arylsulphonamides de	10
l'acide diphénylthiophosphinique 🌒 Mass Spectroscopy Study on Thiophosphororganic	
Arylsulphonamides (II). Arylsulphonamides of Diphenylthiophosphinic Acid.	23
1. SIMINICHANU, AL. POP, Analyse des Technologischen Herstellungsprozesses von Ammo-	31
I. SIMINICEANU AL, POP Synthese des Gesamtherstellungsnozesses von Ammoniak	01
Analysis of the Ammonia-Producing Technological Process	45
I. SIMITI, V. ZAHARIA, H. DEMIAN, S. MAGER, Contributions to the Study of Some	
Heterocycles. (LXIV). Tautomerism of Some Ethyl a-[(3-Aryl-1,2,4-Triazol-5-y1)-tio]	
-Acetocetates	53
I. CRISIEA, V. FARCASAN, The Reaction of Some I-(2-Pyrimidinyi)-Pyrazolin-5-Ones with Hydrazing Hydracia	60
CS. VÁRHELYI, F. MAKKAY, T. CZIER, G. PERINT, Über Dioximinkomplexe der Übergangsmetalle. (LXXIV). Spektrophotometrische Untersuchung über die Komplexe des Rheniums mit apliphatischen α-Dioximen • On the Dioximine Complexes of Transition Metals. (LXXIV). Spectrophotometric Study on the Rhenium Complexes	00
with Aliphatic a-Dioximes	64

4

ki i Ba⊉Ronana Tentina žite rece

÷ ..

. . .

1 Sec. 1 2

CS. VÁRHELYI, I. GÅNESCU, Beiträge zur Chemie der Tetracyano-Säure des Platins (II) ● Contributions to the Chemistry of the Tetracyano- Acid of Platinum (II)	70
S. GOCAN, I. ANECHITEI, The Optimization of Some Echipartitive Eluent Systems for the	
I. BÂLDEA, The Reaction Between Chromate and Thiols. (IV). The Effect of Fe (II)-Fe(III)	13
and Cu(I)-Cu(II) Systems on the Oxidation of Thioglycolic Acid	80
with Di-(2-Ethylhexyl)Dithiophosphoric Acid	89
C. SILVESTRU, FL. ILIES, I. HAIDUC, Organotin Diphenylphosphinates, $R_{4-n} Sn(O_2PPh_2)_n$ I. SILAGHI-DUMITRESCU, R. GRECU, L. SILAGHI-DUMITRESCU, I. HAIDUC, Vi-	
brational Spectra and Coordination Behaviour of Organo-Dithiophosphorus Ligands .	97
Recenzii-Book Reviews-Comptes rendus - Buchbesprechungen	
D. L. Massart, B. G. M. Vandeginste, S. N. Deming, I. Micholle, M.	102
K 2 UT III K II, CHEMOINEUSS; a (EXWOOK (II, KI/KLDT))	1044
Advances in Chemical Physics (I. Prigogine, S. E. Rice, Eds.) Vol. LXX, Evolution of Size Effects in Chemical Dynamics (Maria TOMOAIA-COTISEL	103

DIE OXIDATION DES ÄTHENS ZU ÄTHYLENOXID MIT SAUERSTOFF, AUF SILBERKATALYSATOREN

II. Mathematisches modell des reaktors und die simulation des prozesses

ILIE SIMNICEANU*, IOAN TODEA**, MARIA STANCA*** und ALEXANDRU POP***

Eingegangen am 4 Dezember 1987

Oxidation of Etylene to Ethyleneoxide on Silver Catalyst. The Mathematic Model of the Reaktor and the Simulation of the Process on a Computer. New numerical values of the speed constants are set out for the reactions taken into consideration. The hydrodynamic model of the reaktor is set up and then verified by simulation on a computer.

Die katalytische Oxidation des Äthens mit Sauerstoff, ist die verbreiteste Methode der Herstellung des Äthylenoxyds, da diese Methode sehr viele Vorteile in einem industriellen Prozess aufweist. Obwohl dieser Prozess sehr oft untersucht wurde, werden die Forschungen die diese Methode perfektieren wollen fortgesetzt [15-17].

Diese Arbeit versucht ein mathematisches Modell des Reaktors zu bestimmen das mit einem elektronischen Rechner simuliert wird und die so berechneten Werte, werden mit den experimentell gemessenen Werten verglichen, um das Modell zu prufen.

1. Prozessmodelierung. Das mathematische Modell eines chemischen Prozesses verlangt die Festlegung des makrokinetischen Modells, des thermischen und des hydrodynamischen Modells.

Die Oxydation des Äthens zu Äthylenoxyd gehört zur Kategorie der Kontaktprozesse [18] und schliesst sowohl Umwandlungs- und Massentransportprozesse als auch Wärmeumwandlung und Wärmeübergangsprozesse ein.

Da der Vorgang starck exotherm ist, können die elementaren Wärmeumwandlung- und Wärmeübergangsprozesse nicht durch ihre Geschwindigkeit bestimmt werden. Die Gesamtgeschwindigkeit des Prozesses kann in Funktion von Arbeitsbedingungen, Geschwindigkeit eines elementaren Umwandlungs oder Transportprozesses oder durch ein kombiniertes Modell bestimmt werden.

Die meisten Verfasser haben grosse Werte für die Aktivierungsenergie: erhalten, was zur Schlussfolgerung führt dass in einem Prozess die Reaktionsgeschwindigkeit begrenzend ist. Die Literatur enthält eine grosse Anahl Berichte welche sich mit der Kinetik des Vorgangs beschäftigen. Obwohl die meisten Verfasser auf dieselbe Schlussfolgerung gekommen sind, stimmen die in der Literatur angegebene kinetische Gleichungen stimmen im allgemeinen nicht überein /9, 15, 17, 19-21/.

Politechnische Institut Iași, 6600 Iași, Rumănien
 ** Chemische Lyceum Turda, 3350 Turda, Rumănien
 *** Universität Gluj-Napoca, Facultät für Chemische Technolozie, 3100 Cluj-Napoca, Rumănien

I. SIMINICEANU et. al.

Der Vergleich der experimentellen Messwerten mit denen anhand des mathematischen Modells berechneten führte uns zur Schlussfolgerung, dass diese Gleichungen nur Formell übereinstimmen, weil das mathematische Modell auf Grund dieser Gleichungen ausgearbeitet wurde. Diese Gleichungen sind mit verschiedenen Katalysatocen erhalten worden die nicht hinreichend charakterisiert wurden wobei die Arbeitsbedingungen in denen diese gewirkt haben auch nicht hinreichend beschrieben worden sind, folglich wurden die Bedingungen in denen diese Gleichungen gültig sind, oberflächlich behandelt.

Es gab kinetische Gleichungen die zu besseren Ergebnissen führten [17] aber auch hier gab es wesentliche Unterschiede.

Da keine von den vorgeschlagenen kinetischen Gleichungen zu berechneten Werten führt die mit den experimentell, in Industriereaktoren gemessene, übereinstimmen, waren neue experimentelle Bestimmungen notwendig. Diese wurden mit industriellen Silberkatalysatoren, die auf eine keramische Unterlage aufgebracht worden sind und eine Kugelform mit Körnerdurchmesser $d = (6 - 7) \cdot 10^{-3}$ m, in einem Rohr mit D = 0,021 m durchgeführt, die ein physisches Modell des Reaktors darstellte. Die Verarbeitung der experimentellen Daten führte zu folgenden kinetischen Gleichungen :

$$(-r_{E}) = k_{1} \cdot \frac{P_{E}}{P_{E}^{\circ}} \cdot P_{o_{2}}$$

$$(r_{co_2}) = k'_1 \frac{P_E}{P_E^{o}} P_{o_2} + k_2 \cdot P_{Eo} \cdot P_{c_2}$$

 $k_1 = k_1^{\circ} e \frac{E_{01}}{R_T} = E_{01} = 105.000 [J/mol] \quad k_1 = 2,8395.10^{5} \left[\frac{mol}{kg \cdot s \cdot MP_{G}} \right]$

$$k_{2} = k_{2}^{\circ} \cdot e \frac{E_{02}}{R_{T}} = E_{02} = 55.000 [J/mol] \quad k_{2}^{\circ} = 2,333 \left[\frac{mo!}{kg \cdot s \cdot MP_{d}}\right]$$
$$k_{1}' = 0,5794 \cdot 10^{5} \cdot e^{-\frac{E_{a1}}{R_{T}}} \left[\frac{mol}{kg \cdot s \cdot MP_{d}}\right]$$

2. Mathematisches Modell des Reaktors. Das Gleichungssystem des zur mathematischen Beschreibung des Oxydationsprozesses des Äthens zu Äthylenoxyd benützt werden kann besteht aus den Gleichungen der Massenbilanz entsprechend den zwei chemischen Reaktionen [22] Gleichungen der thermischen Bilanz und den Gleichungen des hydrodynamischen Modells.

Da der Oxydationsprozess des Äthens zu Äthylenoxyd nach dem makrokynetischen Modell "Unumkehrbare chemische Reaktion" stattfindet, sind die Bilanzgleichungen der Komponenten die sich umwandeln;

in denen:

$$\frac{dn_{E}}{m \cdot dG} = (-r_{E}) \quad (3)$$

$$\frac{dn_{CO_{2}}}{m \cdot dG} = (r_{CO_{2}}) \quad (4)$$

.

Die Katalysathorenmasse m und die Kontaktzeit τ des Kathalysators mit der Reaktionsmasse sind mit folgenden Gleichungen definiert;

$$m = V_c \cdot \rho_c; \ \mathcal{B} = \frac{Z}{W} = \frac{Z \cdot A_t}{V_c} \qquad A_t = \frac{\pi D^2}{4} \qquad (5)$$

in denen A_i den Durchgangsquerschnitt der Fliessmasse darstellt. Ersatzt man diese Grössen in den Gleichungen (3-4) erhalt man;

$$-\frac{dP_{E}}{dZ} = \frac{dP_{E0}}{dZ} = (-r_{E})\frac{\Pi \cdot D^{2} \cdot g_{C} \cdot P_{T}}{4 n_{T}} (6) \frac{dP_{C02}}{dZ} = (r_{C02}) \cdot \frac{\Pi \cdot D^{2} \cdot g_{C} \cdot P_{T}}{2 n_{T}} (7)$$

Haben die Bilanzgleichungen die Form [18] da der thermische Zustaud i Reaktor politrop ist;

$$-\frac{d(\Delta H)}{m d c} = \sum_{i=1}^{n} (r_i) (\pm \Delta_{R_i} H_T^\circ) + K_T \cdot \overline{II} \cdot D \cdot \Delta T$$
(8)

Zieht man in Betracht dass der Prozess durch zwei chemische Reaktionen beschrieben ist, wird die gebildete Wärmemenge durch folgende Gleichung beschrieben.

$$\sum_{i=1}^{2} \{r_{i}\} (\pm \Delta_{R_{i}} H_{T}^{\circ}) = (-r_{E}) (-\Delta_{R_{1}} H_{T}^{\circ}) + (r_{CO_{2}}) (-\Delta_{R_{2}} H_{T}^{\circ})$$
(9)

Benützt man die Beziehungen (5, 8, 9) So wie auch die Gleichung der Enthalpie der Reaktionsmasse in einem gegebenen Moment;

$$\Delta H = \overline{M} \cdot \overline{C}_{P} \cdot T ; \quad \overline{M} = \sum_{i=1}^{n} X_{i} \cdot M_{i}$$
(10)

so erhält die thermische Bilanzgleichung die Form;

$$-\frac{d T}{d Z} = \frac{9_{C} \cdot A_{\uparrow} \cdot ((-r_{E})(-\Delta_{R_{1}}H_{T}^{\bullet}) + (r_{CO_{2}})(-\Delta_{R_{2}}H_{T}^{\bullet})] + K_{T} \cdot \overline{\mathbb{I}} \cdot D \cdot \Delta T}{\overline{M} \cdot \overline{\mathbb{C}_{P}} \cdot T}$$
(11)

wo,

$$\Delta_{R_1} H_T^{\circ} = (-23.717,25 + 1,65 \cdot T_R - 2,693.10^{-2} T_R^{2} + 35,154.10^{-6} T_R^{3}) \cdot 4,19$$
 (12)

$$\Delta_{R_2} H_T^{\circ} = (-289.650 + 2.575 \cdot T_R - 1.968 \cdot 10^{-2} \cdot T_R^2 - 33.207 \cdot 10^{-6} \cdot T_R^3) \cdot 4.19$$
(13)

3. Das hydrodynamische Modell des Reaktors. Da in diesem chemischen Prozess der Druck eine sehr wichtige Grösse ist, muss das mathematische Modell für seine korrekte Simulation die berechnung des Druckes in jedem Punkt des Reaktors, erlauben.

Folglich ist es notwendig, dass das mathematische Modell des Reaktors neben den Gleichungen der Massen- und Wärmebilanz auch die Bilanz der Bewegungsmenge erhält.

Die Literatur gibt eine grosse Anzahl von Gleichungen für die Berechnung des Druckabfalls in feststehendenKornschichten an [23-33], die aber einen Anvendungsbereich haben, weil bei ihrer Erhaltung nicht alle Faktoren die den Druckabfall beeinflussenin Betracht gezogen sind, wie zum Beispiel die Eigenschaften der Fliessmasse der Teilchen, usw. die dann von anderen Grössen beeinflusst werden.

Von den vorgeschlagenen Gloschungen die für den Druckabfall in den Kornschichten benützt werden können, ergeben die von Ergun [23-24] die besten Übererinstimmung mit den experimentellen Messwerten, aber auch diese weisen beträchtliche Unterschiede auf. Man hat festgestellt dass die in Ergunus Gleichungen enthaltenen Konstanten von der Geometrie des Systhems der Beschaffenheit des Materialls und von der Re Ziffer abhängen [29], [34]. Es ist sicher dass Erguns Gleichung für Schichten die das Verhältnis D/dp < 50 haben, nicht anwendbar ist weil in diesem Fall ein sehr starcker Einfluss der Wand stattfindet. Um die Konstanten der Ergunschen Gleichung zu bestimmen haben wir experimentelle Messungen am physikalischen Modell des Reaktors, ein Rohr mit dem Durchmesser 0.021 m und Lange 2 m, durchgeführt [34].

Die experimentellen Messungen des Druckabfalls wurden an drei verschiedenen Längen der Schicht durchgeführt. Für jede Länge einer Schicht wurden drei Arten von Messungen durchgeführt entsprechend der verschiedenen Anordnung der Korner in der Schicht. Die erhaltenen Werte sind in Tabelle 1 wiedergegeben, die auch eine Spalte für den Druckabfall im leeren Rohr mit dem Trägersieb enthält.

Mit Hilfe dierser Werte hat man die experimentellen Werte des Verhaltnisses $\Delta P/Z$ für verschiedene Langen der Katalysatorenschicht so wie auch ihre Mittelwerte bestimmt. Die erhaltenen Werte sind in Tabelle 2 wiedergegeben.

Man merkt ein leichtes Wachsen des Verhaltnisses $\Delta P/Z$ mit der wachsenden Schichtlange, Z. Dieses Phänomen kann durch das Wachsen der Inhomogenitäten mit wachsender Schichtenlange erklärt werden. Auf dem Grund der Schicht fällt die Porosität mit wachsender Schichtlänge und so erhält man einen grösseren Druckabfall.

Tabelle 1

Durchf-luss m³/h	ΔP Siebe+Rohr mm CW	ΔP Schicht+Siebe mm CW	Δ <i>P</i> Schicht mm CW	ΔP Schicht N/m²	Z Schicht m
1	21,5	34	12,5	122,63	0.28
2	76	108	32,0	213,92	0,28
3	184,5	245	60,5	593,505	0.28
4	319	442	123,0	1206,63	0.28
1	21,5	45,5	25	245,25	0,56
2	76	144,5	68,5	671,185	0.56
3	184,5	309,5	125	1226,25	0.56
4	319,0	551,0	232	2275,92	0.56
1	21,5	58,5	37	362,97	0.84
2	76	179	103	912,33	0.84
3	184,5	382,5	198	1942,38	0.84
4	319	671,5	352.5	3458.02	0 84

Experimentellewerte des Druckabfalls.

Tabelle 2

Mittelwerte des Druckabfalls im Verhaltnis zur Langeneinheit

Durchf- luss m³/h	$\frac{\Delta}{Z = 0.28 \text{ m}}$	$(\Delta P/Z)$ Mitt N/m ² · m		
1	437,96	434,95	432	436
2	1121,45	1199,97	1202,9	1174,77
3	2119,66	2189,73	2312,35	2207,24
4	4009,39	4064,14	4116,69	4063,4

Um eine Gleichung des Druckabfalls zu bestimmen geht man von der Bilanzgleichung der Bewegungsmenge aus [18].

$$\overline{g} \cdot W \cdot \frac{dW}{dZ} + \overline{g} \cdot W (-r_{A_i}) \cdot \Delta V^* = (-r_h) \quad (14)$$

Vernachlässigt man die Volumenäderung im Prozess und zieht man den Mechanismus des Umwandlungsprozesses und die Umwandlung der Bewagungsmenge in festen Schichten in Betracht, so erhält man die Beziehung;

$$\frac{dP}{dZ} = 32 \cdot \frac{\mu \cdot W}{D^2} + \overline{g} \cdot \frac{W^2}{2 \cdot D}$$
(15)

Die liniare Geschwindigkeit o kann durch die reele Geschwindigkeit w_0/ε , der Fliessdurchmesser D durch den Hohlraumdurchmesser d_e ersetzt werden.

Die letzten können mit Porosität (ε), und spezifische Oberfläche der Füllung der Schicht (a_s) ausgedrückt werden indem man die Beziehungen (16) benützt;

$$n_{c} \cdot \overline{11} \cdot \frac{d_{e}^{2}}{H} \bullet \frac{\overline{11} \cdot D^{2} \varepsilon}{4}; a_{s} = \frac{4 \overline{11} \cdot n_{c} \cdot \overline{2} \cdot d_{e}}{\overline{11} \cdot D^{2} \cdot \overline{2} \cdot (1 - \varepsilon)} = \frac{4 \cdot n_{e} \cdot d_{e}}{D^{2} (1 - \varepsilon)}; D = \frac{4 \cdot \varepsilon \cdot d_{e}}{a_{s}(1 - \varepsilon)} = \frac{2 \cdot \varepsilon \cdot d_{p}}{3(1 - \varepsilon)}$$
(16)

Setzt man die Beziehungen (16) in die Gleichung (15) ein und fasst man alle Konstanten in zwei Koeffizienten K_1 und K_2 zusammen, erhält man;

$$-\frac{dP_{T}}{dZ} = K_{1} \cdot \frac{\bar{p} \cdot W_{0} \cdot (1-\epsilon)^{2}}{\epsilon^{3} \cdot d_{p}} + K_{2} \cdot \frac{\bar{p} \cdot W_{0}^{2} \cdot (1-\epsilon)}{d_{p}^{2} \cdot \epsilon^{3}}$$
(17)

_

die auch mit Hilfe des Re Kriteriums geschrieben werden kann.

$$R_{e} = \frac{\overline{9} \cdot W_{o} \cdot d_{p}}{(1 - \varepsilon) \overline{\mu}}; \ \overline{9} = \sum_{i=1}^{n} X_{i} \cdot 9_{i}; \ \overline{\mu} = \frac{\sum_{i=1}^{n} \mu_{i} \cdot X_{i} \cdot (M_{i})^{1/2}}{\sum_{i=1}^{n} \cdot X_{i} \cdot (M_{i})^{1/2}}$$

$$\mu_{i}^{(1)} = \mu_{i}^{o} \cdot \frac{273 + C}{T + C} \left(\frac{T}{273}\right)^{3/2}$$
(18)

Um die Konstanten K_1 und K_2 der Gleichung (18) zu bestimmen bringen wir die Gleichung auf die Form;

$$-\frac{dP_{T}}{dZ} \cdot \frac{E^{3}}{(1-E)^{3}} \cdot \frac{\overline{g} \cdot dp^{3}}{\overline{\mu}^{2} \cdot R_{e}} = y = K_{1} + K_{2} + R_{e}$$
(19)

Fig. 1

und die Gleichung (17) wird;

$$-\frac{d P_{T}}{d Z} = 45,825 \cdot \frac{\overline{9} \cdot W_{o} (1-\varepsilon)^{2}}{d \beta \cdot \varepsilon^{3}} + 0,7054 \cdot \frac{W_{o}^{2} \cdot \overline{9} \cdot (1-\varepsilon)}{d p \cdot \varepsilon^{3}}$$
(20)

Die Überprüfung der Gleichung (20) wird durch Vergleichen der berechneten Werten mit den experimentellen erhaltenen durchgefuhrt und ist in Tabelle 3 wiedergegeben.

Bere	chnete ur	nd gemessene	Werte de Druc	kabialis
Durchf-	wo	$\Delta P/\nu Z$	N/m² · m	Fehler
m³/h	m/s	Berechnet	Gemessen	%
1	0,802	414,23	436	-4,99
2	1,603	1198,44	1174,77	+2,02
3	2,405	2345,60	2207,24	+6,26
4	3,207	3891,93	4063,40	-4,23

Tabelle 3

Die gute ubereinstimmung der berechneten Werten mit den experimentell gemessenen zeigt uns die Gultigkeit der Gleichung (20), die wir fur die Berechnung des Druckabfalls in Industriereaktoren der Athylenoxydation zu Athylenoxyd vorschlagen.

Die Simulation des Prozesses mit einem Digitalrechner. Das Gleichungssystem (1, 2, 6, 7, 11, - 13, 20) zu denen die Massenbilanzgleichung [22] dazukommen stellen das mathematische Modell des Oxydationsreaktors des Äthens zu Äthvlenoxyd, dar.

Das Überprufen der Gleichungen wurde durch ihre numerische Lösung durchgefuhrt indem mandie Polygonallinienmethode benűtzt. Die Lösung wurde mit folgenden Anfangsbedingungen durchgeführt;

$$\begin{aligned} x_{E}^{0} &= 0,15 \quad x_{E0}^{0} &= 0,0 \qquad x_{H_{s}O}^{0} &= 0,021 \\ x_{O2}^{0} &= 0,07 \quad x_{CO_{s}}^{0} &= 0,1055 \qquad x_{A''}^{0} &= 0,6724 \quad n_{T} &= 0,2168 \, \frac{\text{mol}}{\text{s}} \\ T^{\circ} &= 483 \, \text{K} \ T_{4}^{0} &= 521 \, \text{K} \qquad P_{T} &= 2,173 \, \text{MPa} \end{aligned}$$

die den heutigen Industriereaktoren entsprechen. Der thermische Gesamtumwandlungskoeffizient K_{T} wurde mit einer für solche. Systeme entsprechenden empirischen Gleichung [17] berechnet.

Die erhaltenen Ergebnisse für dass Profil; Temperatur der Reaktionsmasse und Gesamtkonzentration sind in Fig. 2. dargestellt.

Ihre Analyse zeigt eine gute Übereinstimmung mit den experimentellen Messwerten die in Industriereaktoren in denselben Bedingungen durchgefuhrt wurden.

Tabelle 4

Berechnete und gemessene Werte der Konzentrazion, der Temperatur und des Druckes

Kom	р. С ₂ Н ₄	0,	C ₂ H ₄ O	CO3	II ₂ O	Α"
x _{ber}	0,137	0,5349	0,0973	0,114	0,0101	0,6765
Xgemi	0,1367	0,0536	0,0103	0,1137	0,0098	0,6759

Das zeigt uns die Möglichkeit der Benützung des mathematischen Modells fur Optimisationsprobleme, automatische Regelung und Projektentwurf.

BEZEICHNUNGEN:

A_i D - Durchschnitt des Fliessmassedurchgangs. Durchmesser des Katalysatorrohrs. k1, k2 - Konstanten der Reaktionsgeschwindigkeit. Ea1. Ea2 - Actiwierung Energie der zwette Reaktionen. - Partialdruck der Komponenten. p; r_i P_T - Geschwindigkeit der Reaktion i. - Gesamtdruck. n_T K_T Molengesamtzahl.

- Ζ - Länge des Rohrs.
- Katalysatormasse. m
- Vc - Katalysatorvolumen
- $\Delta T = T T_u$ Differenz der Reaktionsmasse und Kühlöltemperatur.
- M - Molarmasse der Gasmischung.
- Spezifische Wärme der Gasmischung. c,
- $\Delta_{Ri}H_T^0$ - Thermischer Effekt für die gegebene Reaktion.
- wo - Fiktive Geschwindigkeit des Gases.
- Σ - Schichtenporosität.
- dp - Durchmesser der Körner des Katalysators.
- II - Viscosität der Gasmischung.
- Re - Revnolds Kriterium.

LITERATUR

- 1. F. Asinger, "Die Petrochemische Industrie", Berlin, Akademie-Verlag, 1971.

- G. Mault, Ind. Eng. Prod. Des. Dev., 1, 285, (1962).
 G. Mault, Ind. Eng. Prod. Des. Dev., 1, 285, (1962).
 G. H. Twigg, Prod. Roy. Soc., A 188, 92 (1946).
 G. H. Twigg, Trans. Faraday. Soc., 42, 284 (1946).
 E. R. Kenson, M. Lapkin, J. Phys. Chem., 74(7), 1493 (1970).
 A. Orzechowski, E. K. Mac Cormack, Can. J. Chem., 32, 388 (1954).
 L. Ya. Margolis, S. Z. Roghinski, Probl. Kinet. Katal., Akad. Nauk. SSSR, 9, 107 (1957). (1957).
- 8. V. A. Rastaturin, Zh. Priklad. Chim., 43. 1343 (1970).
- 9. E. L. Force, A. T. Bell, J. Catalysis, 38, 440 (1975).
- 10. H. Voge, C. Adams, Adv. Catalysis, 17, 151 (1967).
- 11. R. Sampson, Adv. Catalysis, 14, 429 (1963).

- P. Harriat, J. Catalysis, 21(1) (1971).
 M. R. Egbert, Pat. franc. 1.329.547 (1956).
 V. S. Sokolov, E. P. Otborkina, V. A. Davidov, B. B. Chesnokov, Kinetica i Kataliz, 28(2), 398 (1987).
- 15. P. Krypilo, L. Mögling, Chem. Techn., 31, 82 (1979).
- 16. P. Krypilo, L. Gerber., Chem. Techn., 30, 630 (1978).
- 17. P. Krypilo, L. Mögling, D. Klose, N. Süptitz, Chem. Techn, 54, 85 (1982).
- 18. C. Calistru, C. Leonte, "Tehnologia substantelor anorg". Ed. did. și ped. București, 1972.

- G. R. Boreskov, L. A. Wasiliewich, Kinetika i Kataliz, 3, 214 (1962).
 A. A. Belaja, M. I. Rubenik, Kinetika i Kataliz, 3, 201, (1962).
 A. J. Kurilenko, N. V. Kulkova, M. I. Tempkin, Kinetika i Kataliz, 3, 117 (1962).
- 22. I. Šiminiceanu, I. Todea, M. Stanca, A. Pop, Studia Univ. Babeş-Bolyai, Chemia XXXII(1) 1987.
- 23. S. Ergun, Chem. Eng. Progr., 48, 89 (1952).
- 24. S. Ergun, Anal. Chem., 23, 5 (1951).
- 25. H. Metha, M. G. Hawley, Ind. Eng. Chem. Process. Design. Develop, 6, 252 (1967).
- 26. H. F. Rase, "Chemical reactor design for process plants", vol. 1-2 J. Wiley, New-York, 1977.
- 27. M. H. Hayman, Hydrocarbon Processing, 47, 131 (1968).
- 28. H. Brauer, Chem. Ing. Tech. 29, 785 (1957).
- 29. R. E. Hicks, Ind. Eng. Chem. Fundam., 9, 500 (1970). 30. M. Leva, "Fluidization", Mc. Graw-Hill, New York, 1959, p. 42.
- 31. L. E. Brownell, D. L. Katz, Chem. Eng. Progr., 3, 537 (1947).
- 32. H. E. Rose, Proc. Inst. Mech. Eng., 153, 154 (1945).
- 33. E. P. Dutkai, "Coloane cu umplutură în tehnologia chimică", Ed. teh. București, 1977.
- 34. I. Siminiceanu, A. Pop, Bul. Inst. polit. Iași, XXVII(XXXI), f. 1-2, 51 (1981).

N-ACYLDERIVATIVES OF ANESTHESINE

MARIA VAGAONESCU*, FRANCISC HODOŞAN**, SORIN MAGER*, LAURA STOICESCU** and IOAN OPREANU**

Received : December 14, 1987

New N-acylderivatives of anesthesine have been prepared. The compounds have been characterised by chemical and spectral analysis.

N-substituted derivatives of anesthesine, in which R has a peptidic or terpenoidic structure [1-6] are well known among juvenile hormone analogues (JHA):

$$H_5C_2OOC - - NH - R$$

Due to the importance of synthetic physiologically active insecticides, the present paper has as object the study of N-acylderivatives of anesthesine. The following aliphatic N-acylderivatives have been prepared :

$$H_5C_2OOC - - NH - CO - C_nH_{2n+1}$$
 $n = 0, 1, ..., 17$

The prepared compounds have been analysed by chemical and physical methods as well as by biological tests. The preparation of the N-acylderivatives has been achieved through acylation of anesthesine with acid chloride of aliphatic acids, in the presence of pyridine, obtaining practically quantitative yields (90-96%). The obtained compouns are well crystallised substances, with clear melting points. They have been characterised by elemental microanalysis (Table 1) by IR, NMR and mass spectra.

In the IR spectra of N-acylderivatives, as compared to that of anesthesine, different frequency shifts appear, as well as new frequencies. Thus, one can notice the disappearance of the three $v_{\rm NH}$, vibrations of anesthesine, at 3240 cm⁻¹, 3360 cm⁻¹ and at 3440 cm⁻¹ and the appearance of only one vibration in this region, at 3310-3360 cm⁻¹, due to the $v_{\rm NH}$ stretching vibration of the acylcompound. It also appears the two characteristic frequencies: amide I at 1660—1695 cm⁻¹ and amide II at 1525—1550 cm⁻¹. Shifts in the $v_{\rm C=0}$ vibrations, to lower values, from 1695 cm⁻¹ to 1660 cm⁻¹ can also be seen in accordance with the bulkiness of the aliphatic chain (Table I).

The NMR and mass spectra of N-octanoyl- and N-decanoyl- compounds, being biologically active on some species of insects [6], have been studied, in order to get more information about their structure.

University of Cluj-Napoca, Faculty of Chemical Technology, Department of Physical, Organic and Technological Chemistry, 3400 Cluj-Napoca, Romania
 Institute of Chemistry, 3400 Cluj-Napoca, Romania

N-	A or 1	Molecular	Molecular	m.p.		C%	H%		נ	N%	IR spectral	bands [cm, ⁻¹]
	Асуг	formula	weight	[°Ĉ]	calc.	found.	calc.	found.	calc.	found.	<i>N</i> H [∨] NH	vco
1	formyl	C ₁₀ H ₁₁ O ₃ N	193.22	146	62.15	61,91	5.74	5.80	7.25	7.76	3330	1715-1695
2	ethanoyl	$C_{11}H_{13}O_3N$	207.25	102	63.74	63.71	6.33	6.30	6.75	6.95	3330 - 3320	1690
3	propanoyl	C12H1 O3N	221.28	110	65.30	65. 75	6.84	6.80	6.33	6.72	33303320	1690-1680
4	butanoyl	C13H O3N	235.31	89	66.3 5	66.53	7.29	7.49	5.95	6.10	3315-3270	1680
5	i-butanoyl	C ₁₃ H O ₃ N	235.31	88	66.35	66.26	7.29	7.48	5.95	6.36	3300-3280	1680
6	pentanoyl	C14H O3N	249.34	67	67.43	67.31	7.69	7.35	5.61	5.77	3300 - 3280	1680-1670
7	hexanoyl	C ₁₅ H ₂₁ O ₃ N	263.37	87	68.40	68.67	8.05	8.13	5.31	5.29	3340-3330	1680-1670
8	heptanoyl	C16H23O3N	277.40	94	69.77	64.75	8.37	7.89	5.05	5.44	3340-3330	1680 1670
9	octanoyl	C ₁₇ H O ₃ N	291.43	84	70.05	70.15	8.66	8.45	4.80	4.90	3330	1680 - 1670
10	nonanoyl	C ₁₈ H O ₃ N	305.46	82	70.77	70.70	8.92	9.01	4.58	4.84	3340-3325	1680 - 1670
11	decanoyl	C ₁₉ H O ₃ N	319.49	77	71.31	71.59	9.16	8.84	4.38	4.94	3330-3310	1675
12	dodecanoyl	C21H33O3N	347.55	86	72.56	72.32	9.58	9.48	4.32	4.74	3330 3 320	1670
13	tetradecanoyl	C ₂₃ H O ₃ N	375.61	91	73.56	73.31	9.94	9.55	3.73	4.19	3330 - 3320	1670
14	hexadecanoyl	$C_{25}H_{41}O_3N$	403.67	96	74.38	74.24	0.25	10.25	3.47	3.93	3360-3330	1670 1660
15	octadecanoyl	C ₂₇ H O ₈ N	435.73	104	75.10	74.78	0.52	10.33	3.24	3.10	3330 - 3320	1660

~

Analytical dates for N-acylderivatives of anesthesin

Table 1

M. VAGAONESCU et al.

The NMR spectra of the two new compounds are in agreement with their structure, being practically identical, because of the insignificant presence of two more -- CH2- groups in the N-decanoll compound as compared to theoctanoyl one. Only the methylenic group connected directly to the amidic function may be identified as a triplet with $\delta = 2.33$ ppm. All the other protons of the octanoyl and decanoyl radicals, respectively, show a large signal between 1.2-1.4 ppm. The $-CH_2$ - group belonging to the ester function, bound directly to the oxygen atom, shows a distinct signal, the specific quartet at $\delta = 4.47$ ppm. The triplet of the ethyl group is not distinguishable from the signals of the protons belonging to the octanoyl (decanoyl) chain. The four aromatic protons located at the 2,6 and 3,5 positions, respectively, show the characteristic AB pattern $(\Delta\delta/J = 2.3)$ with $\delta_{\rm H}2(6) = 8.20$ ppm and $\delta_{\rm H}3(5) =$ = 7.85 ppm. The δ values for protons' $\dot{H}^{2(6)}$ and $\dot{H}^{3(5)}$ are in agreement with the important deshielding effect of the -COOR ($\Delta \delta = 0.74$ ppm) groups linked in the ortho position of the benzenic ring [7].

The mass spectra of N-octanoyl and of N-decanoyl-anesthesine prove their purity, having the parent ion at m/e = 291 and at m/e = 319, respectively, in good agreement with the corresponding molecular weight. The calculated double bond equivalent, based on relation: N = 1/2 (2w - x + y + 2), gives for both compounds, the same value N = 6, indicating disubstituted aromatic compounds, each substituent having a double bond (C = 0, in the ester function and in the amide).

Experimental. One mole anesthesine in anhydrous ethylether, with some drops of pyridine is treated with one mole of acid chloride at room temperature, except the N-formyl and N-ethanoyl compounds, the preparation of which occurs on the water bath, by warming for 30 minutes. The etheral solution is washed with acidified water, then with water again. The solid N-acylde-rivative is separated after ether removal and is purified by crystallisation from ethanol.

The IR spectra have been recorded in KBr pellets on an UR 10 Zeis spectrometer. The NMR spectra have been recorded on a BS 487 C Tesla spectrometer at 60MHz. The mass spectra have been recorded on a Varian-MAT 311 spectrometer.

Conclusions. New N-acylderivatives of anesthesine have been prepared. The N-acylderivatives have been characterised by chemical and spectral analysis. Biological tests point out a specific insecticide activity.

REFERENCES

- K. Slama, Annual Review of Biochemistry, 40, 25 (1971).
 T. H. Babu, K. Slama, Science, 175, 78 (1972).
 K. Slama, Z. Naturforsch., 26 b, 719 (1971)
 M. Zaoral, Science, 170, 92 (1970).
 K. Slama, M. Romanuk, F. Sorm, "Insect Hormones and Bioanalogues", Springer Verlag, Wien, 1974.
- 6. M. Vagaonescu, F. Hodoşan, M. Iacob, L. Stoicescu, R.S.R. Pat. 73032 (1979).
- 7. L. M. Iackman, S. Sternhell, "Applicationos of NMR Spectroscopy in Organic Chemistry", 2nd Edition, New York, 1969.

14

UNTERSUCHUNG ÜBER EINIGE AMMONIUMSALZE DER WASSERSTOFF-HEXASELENOCYANATO-PLATIN(IV)-SÄURE

CSABA VÁRHELYI* und ION GĂNESCU**

Eingegangen am 25 april 1988

Study on Some Ammonium Salts of the Hydrogen - Hexaselenceyanato -Acid of Platinum (IV). A number of 23 new ammonium salts of the hexaselenocyanato- acid of platinum (IV): H₁[Pt(SeCN)₆] were obtained by double decomposition reactions with the hydrochlorides of aliphatic, aromatic, heterocyclic amines and alkaloides from the aqueous solution of Na₂[Pt(SeCN)₆]. The products were characterized by chemical analysis and IR spectra. The thermal decomposition of some salts was followed by means of derivatographic measurements.

Einleitung. Die Hexaacido-Komplexe der drei- und vierwertigen Übergangsmetalle sind starke Komplexsäuren vom Typ: $H_2[MX_6]$, bzw. $H_3[MX_6]$ (X = = Cl, Br, I, NO₂, N₃, NCS, NCSe). Diese Säuren bilden leicht Ammonium- und Phosphoniumsalze. Zu diesem Zweck sind insbesonders die Derivate mit X == NCS sehr geeignet.

Die starke Basizität solcher Säuren wurde in unserer vorhergehenden Arbeit [1] durch pH- metrischen Messungen bestätigt. Die H3[Cr(NCS)6] und $H_3[Rh(NCS)_6]$ — Säuren wurden zur gravimetrischen und spektrophotometrischen Bestimmung einiger Alkaloide und N-Basen mit pharmazeu-tischer Bedeutung verwendet [2-4]. Die intensiv gefärbten $[Rh(NCS)_6]^{2-}$, [Fe(NCS)₆]³⁻ und [Mo₂O₄(NCS)₆]⁴⁻-Ionen dienen zur Bestimmung der entsprechenden Metallen [5-7].

Die Hexaselenocyanato-Komplexe sind viel unbeständiger als die entsprechenden Hexathiocyanato-Derivative.

Diese Pseudohalogeno-Derivate entstehen, im allgemeinen in nichtwässerigen Lösungsmitteln, wie Aceton, Acetonitril, DMF und DMSO und werden durch Wasser, insbesondere in saurem Medium, zersetzt. (z.B. K₃[Cr(NCSe)₆], $K_{2}[Hf(NCSe)_{6}], K_{2}[Zr(NCSe)_{6}], K_{3}[Bi(NCSe)_{6}], usw. [8-11].)$

Das Hexaselenocyanato-Platin(IV)-Komplex wurde aus Hexacloroplatinat (IV) erhalten. Einige Schwermetall- und Ammoniumsalze (Tl, Pb, Ni, Pyridin, Chinolein) wurden ebenfalls isoliert und charakterisiert [12-14].

Ergebnisse und Diskussionen. In vorliegender Arbeit wurden 23 neue Salze der zweibasischen Komplexsäure: $H_2[Pt(SeCN)_6]$ mit aliphatischen, aromatischen und heterocyclischen Aminen, bzw. mit Alkaloiden erhalten und charakterisiert.

Universität Cluj-Napoca, Fakultät für Chemie, 3400-Cluj-Napoca, Rumänien
 Universität Craiova 1100-Craiova, Rumänien

Das Hexaselenocyanato-platinat entsteht leicht aus den analogen Hexachloro-.. bzw. Hexabromo- Komplexen durch eine Substitutions-reaktion mit KNCSe oder NaNCSe.

$$K_2[PtCl_6] + 6KNCSe = K_2[Pt(SeCN)_6] + 6KCl$$

$$K_2[PtBr_6] + 6KNCSe = K_2[Pt(SeCN)_6] + 6KBr$$

Wir beobachteten, daß diese Reaktion in siedender wässeriger Lösung zu einem gelartigen, makromolekularen, dunkelbraunen Produkt führt (wahrscheinlich mit Pt-NCSe-Pt-SeCN-.. Ketten).

Bei einer Temperatur unter 70-80 °C entsteht eine klare, rotbraune Lösung des einkernigen Komplexes $(K_2[Pt(SeCN)_6])$.

Diese Lösung gibt mit Übergangsmetallionen (Tl, Ag, Pb, Hg), mit Metall (II, III)-amin-Basen (z.B. $[Co(en)_2Cl_2]^+$, $[Cu(en)_2]^{2+}$, $[Co(NH_3)_6]^{3+}$, usw. [15]) und mit Aminen, Phosphinen und Arsinen in saurem Medium charakteristische, kristalline Fällungen.

23 neue Ammoniumsalze von diesem Typ sind in den Tabellen 1 und 2 charakterisiert.

Die primären aliphatischen Aminen bilden mit $H_2[Pt(S \in CN)_6]$ keine schwerlöslichen Salze. Die Salze mit aromatischen Aminen sind auch leichter löslich in Wasser. Die analogen Derivate mit Alkaloiden und mit einigen heterocycli-

Tabelle 1

No	Formel	Mol.	Charakteristik	Analyse			
	1 01 m e1	Gew. ber.			Ber.	Gef.	
			Braune, rhomb.	Pt	18,95	18,78	
1.	(Triäthylamin · H), · A	1029,3	Prismen	С	21,00	20,92	
				\mathbf{H}	3,13	3,06	
				N	10,88	10,75	
2. ((Tripropylamin · H), · A	1113,4	Gelbbraune unregelmäss.	\mathbf{Pt}	17,52.	17,47	
			Krist.	С	25,88	25,60	
				\mathbf{H}	3,98	3,77	
				N	10,05	9,87	
3. (Tributylamin · H), · A	1197,6	Gelbbraune Nadeln	Pt	16,29	16,19	
				С	30,08	29,90	
				H	4,71	4,66	
				N	9,35	9,20	
4. (Triäthanolamin · H) _a · A	1125,3	Gelbbraune mikrokrist.	Pt	17,33	17,20	
			Masse	N	9,95	9,90	
5. ($Cyclohexyl-amin \cdot H)_{a} \cdot A$	1025,2	Gelbbraune, kurze	Pt	19,02	18,88	
			Prismen	N	10,92	10,85	
6. (o-Toluidin · H), · A	1041	Braune sternförmige	Pt	18,74	18,66	
			Kristalle	N	10,74	10,54	
7. (m-Toluidin · H) ₂ · A	1041	Dunkelbraune, kurze	\mathbf{Pt}	18,74	18,49	
			Prismen	N	10,74	10,60	
8. (:	m-Xylidin · H) _a · A	1069,3	Gelbbraune Nadeln	Pt	18,24	17,97	
	- ,-			N	10.47	10.24	

Neue Ammoniumsalze vom Typ: (Amin. H)2 [Pt(SeCN)6] mit eliphatischen und erometischen Aminen

Mol. Analyse No. Formel Charakteristik Gew. ber. Ber. Gef. 9. $(\beta$ -Picolin·H), A 1013 Braune Nadeln Pt 19.25 19,08 21,33 С 21.02 \mathbf{H} 1,59 1,40 Ν 11,05 10,97 Pt 10. $(\gamma - \text{Picolin} \cdot \mathbf{H})_2 \cdot \mathbf{A}$ 1013 Gelbbraune 19,25 19,00 Dendryte N 11,05 10,90 11. $(2,6-Lutidin \cdot H)_2 \cdot A$ 1041.2 \mathbf{Pt} Unregelmäss. braune 18,73 18,70 Krist. C 23,06 22,97 \mathbf{H} 1,93 1,90 N 10,75 10,60 12. $(2,4-Lutidin \cdot H)_2 \cdot A$ 1041,2 Gelbbraune, kurze Pt 19,73 19,68 10,75 Prismen Ν 10,90 13. (3,5-Lutidin · H), · A 1041,2 Dunkelgelbe Pt 18,73 18,65 Nadeln Ν 10,75 10,55 Pt 14. (sym. Collidin \cdot H)₂ \cdot A 1069,2 Gelbbraune, dünne rhomb. 18,24 18,11 С 24,71 Platten 24,66 \mathbf{H} 2,26 2,10 N 10,47 10,20 15. (o-Phenanthrolin H₂) A 1007,3 Gelbbraune, dünne \mathbf{Pt} 19,37 19,60 Platten 16. $(\alpha, \alpha'$ -Dipyridyl·H₂)·A 983,3 Gelbbraune unregelmäss. Pt 19,84 Krist. 20.1017. $(0-Oxy-Chinolein \cdot H)_{a} \cdot A$ 1115,2 Gelbe, kurze Prismen \mathbf{Pt} 17,97 17,80 N 10,04 9,96 18. (Benzimidazol·H)_a·A Gelbbraune mikrokrist. Pt 18,28 1063,1 18,35 С Masse 22,59 22,51 \mathbf{H} 1,32 1,27 N 13,16 13,00 19. (Pyramidon · H),A 1289,5 Gelbbraune mikrokrist. \mathbf{Pt} 15,12 15,08 С Masse 29,80 29,73 н 2,81 2,77 \mathbf{N} 13,02 12,94 20. $(Erithromycin \cdot H)_2 \cdot A$ 2292,8 Gelbbraune mikrokrist. \mathbf{Pt} 8,50 8,27 Masse \mathbf{N} 4,88 4,64 21. $(Papaverin \cdot H)_2 \cdot A$ 1505,7 Gelbbraune mikrokrist. Pt 12,95 12,72 Ν Masse 7,43 7,29 22. (Spartein · H), · A 1295,5 Gelbbraune mikrokrist. Pt 15,05 15,00 Masse N 8,64 8,39 17,40 23. $(Cinchonin \cdot H_2) \cdot A$ 1121,5 Gelbbraune mikrokrist. \mathbf{Pt} 17,90 N 9,99 9,70 Masse

Neue Ammoniumsalze vom Typ: (Amin. H)₂ [Pt(SeCN)₆] mit heterocyclischen Aminen und Alkaloiden

schen N-Basen sind sehr schwer löslich und haben deshalb besondere analytische Bedeutung. (z.B. Bestimmung einiger Alkaloide). Die $(Amin.H)_2[Pt(SeCN)_6]$ -Salze lösen sich besser in Alkohol, und sind jedoch in Äther unlöslich.

Unsere infrarotspektroskopischen Untersuchungen bestätigen, daß die Pt-Selenocyanat-Bindung, im Gegensatz zu $[Cr(NCSe)_6]^3-, [Co(Pyridin)_2(NCSe)_2]$, usw., über das Selenatom erfolgt und daß es sich hier um einen Selenocyanato--Komplex (Pt-SeCN..) handelt. Analoge Erscheinung kann auch im Falle der

Tabelle 2

 $[Hg(SeCN)_4]^{2-}$ und $[Pt(SeCN)_2(Amin)_2]$ – Verbindungen festgestellt werden [16].

Die vC=N — Valenzschwingungsfrequenzen und. die vC—Se — Frequenzen des CNSe— Restes treten bei den Tripropylamin-, m-Xylidin- und γ -Pioclin-Salzen bei 2115, 2120, 2125 cm⁻¹ (starke, scharfe Banden), bzw. bei 510, 515, 520 cm⁻¹ (starke Banden) auf.

Bei de Isoselenocyanato-Komplexen, wie $K_3[Cr(NCSe)_6]$, $K_2[Co(NCSe)_4]$, $H[Co(DH)_2(NCSe)_2]$, usw. mit M-NCSe-Bindung erscheinen diese Frequenzen bei 2060-2100 cm⁻¹, bzw. um 580-700 cm⁻¹.

Das thermische Verhalten von einigen Ammoniumsalzen der Halogenosäuren des Platins (II), (IV): $(Amin.H)_2[PtX_4]$, bzw. $(Amin.H)_2[PtX_6](X=Cl, Br;$ $Amin=NH_3$, Anilin, Pyridin, Imidazol, 1/2 en) wurde mit Hilfe von thermogravimetrischen und thermodifferentiellen Analysen untersucht [17, 18]. Diese Messungen zeigen, daß in der ersten Phase der Pyrolyse unter Freiwerden von 2-4 Mol HX Nichtelektrolyte vom $[Pt(Amin)_2X_2]-$, bzw. $[Pt(Amin)_4X_2]-$

F ig. 1. TG und DTA – Kurven von: 1 – (Chinolein·H)₂[Pt(SeCN)₆]; 2 – (8-Oxy-Chinolein·H)₂[Pt(SeCN)₆]; ,,/" (A nin. H) Pt(SeCN)₆; ,,o" H₄[Pt(SeCN)₆]; ,, Δ " [(A nin)₂Pt(SeCN)₄]; ,, κ " [(A nin)₂Pt(SeCN)₃]; ,. \bullet " (Pt(SeC N)₈.

Typ entstehen. Bei der Bildung dieser Zwischenprodukte findet eine partielle Reduktion des Platins(IV) statt.

Der thermische Zerfall der Pseudohalogeno-Komplexe des Platins ist ein sehr komplizierter Prozess. Nach Kukushkin [19] zeigt die Thermoanalyse einiger Ammoniumsalze des $[Pt(SCN)_6]^2$ —Komplexes das Auftreten eines zweikernigen Derivates mit NCS-Brücke : $Pt_2(Amin)_3(SCN)_4$ als Abbauzwischenprodukt.

Die Thermolyse der $(Amin.H)_2[Pt(S\in CN)_6]$ -Salze verläuft sehr wahrscheinlich analogerweise wie diejenige der $(Amin.H)_2[Pt(SCN)_6]$ -Verbindungen. Der Mechanismus des Prozesses ist aber wegen Abscheidung von elementarem Selen viel komplizierter.

Einige typische Derivategramme der obenerwähnten Ammoniumsalze sind in Abb. 1-3 wiedergegeben.

Im Gegensatz zu den Untersuchungen von Kukushkin und Mitarbeiter [19] über die Hexathiocyanato-platinate (IV) konnten wir auf den Thermogrammen der Hexaselenocyanato-Derivate keine Knickpunkte die den zweiker-

Fig. 2. TG und DTA – Kurven von: 3 – Cinchonin $H_3[Pt(SeCN)_6]$; 4 – o-Phenanthrolin $H_3[Pt(SeCN)_6]$.

Fig. 3. TG und DTA – Kurven von: 5 – (o-Toluidin $H_2[Pt(SeCN)_6]$; 6 – (γ -Picolin H_2 [Pt(SeCN)_6]

nigen $Pt_2(Amin)_3(SeCN)_4$ Abbauzwischenprodukten eutsprechen, feststellen. In den meisten Fällen entspricht der Gewichtsverlust um 280-350 °C der Bildung des Nichtelektrolytes des zweiwertigen Platins : $[Pt(Amin)_2(NCSe)_2]$. Bei flüchtigeren Aminderivaten, wie Pyridin, Picolin, Toluidin, deutet der Inflexionspunkt bei 220-250 °C eventuell auf eine partielle Dezaminierungsreaktion. Die endothermen Minima im Temperaturbereiche von 110-330 °C, bestätigen bei allen untersuchten Ammoniumsalzen den Ablauf verschiedener physikalischen und Zersetzungsprozessen, wie Schmelzen, partielle Dezaminierung, Selenabscheidung, usw. Die erheblichen, breiten, exothermen Maxima auf den DTA-Kurven um 520-600 °C weisen auf die Oxydation der Kohlenstoffhaltigen Liganden, SeO₂ Bildung, usw. hin. Der Rückstand bei 700-800 °C ist metallisches Platin in stöchiometrischen Verhältnissen.

Das exotherme Maximum bei 950-1000 °C zeigt eine Phasenumwandlung des Platins.

Die wichtigsten DTA - Daten sind in Tabelle 3 zusammengestellt.

Tabelle 3

Amin	Endothermische Minima	Exothermische Maxima		
o-Toluidin	100-220°C	320-400°C		
	680-720°C	550-630°C		
	750−780° C			
γ-Picolin	95-220°C	320-410°C		
•	680-720°C	520-620°C		
	740-780°C			
Chinolein	100-220°C	520-540°C		
	250-300°C	580—610°C		
	620-650°C	950-1000°C		
o-Oxy-Chinolein	100-150°C	520 – 550 °C		
	220-280°C			
	610-630°C	950—1000°C		
	720740°C			
1/2 o-Phenanthrolin	120-150°C	650 −7 00°C		
	220-250°C	770—7 9 0°C		
	730-740°C			
	820-850°C	980—1000°C		
1/2 Dipyridyl	120-210°C			
	260-280°C	540-570°C		
	630-650°C	980 1000 °C		
	730-750°C			
1/2 Cinchonin	110-150°C	450-460°C		
	$200 - 230 ^{\circ}\text{C}$	600 −7 00°C		
	730−75 0 °C	980—1000°C		

DTA	- Spit	ztem pe	rature	bel	der	thermis	ichen	Zersetzung
	einiger	Salze	vom '	Typ:	(Aml	n. H).	[Pt(So	CN).1

Experimenteller Teil. $K_2[Pt(SeCN)_6] \cdot 2H_2O \cdot 20 \text{ mMol } K_2[PtCl_6]$ werden in 200 ml Wasser mit 120 mMol KNCSe auf dem Wasserbade (70-80°C) 3-4 Stunden bis zur Auflösung des gelborangen Hexachloro-Salzes erwärmt. Die entstandene dunkelbraune Lösung wird von etwas ausgeschiedenem rotem Selen und von einem gelartigen, makromolekularen Nebenprodukt abfiltriert. 20-25 ml klare Lösung werden zur Kristallisation gebracht. Der Kaliumsalz scheidet sich in granatroten, hexagonalen Platten aus.

Ammoniumsalze der $H_2[Pt(SeCN)_6]$ -Säure. 10–15 mMol Amin (aliphatische, aromatische, heterocyclische Amine, Alkaloide) werden mit 5–10 ml konz. Salzäure behandelt und auf dem Wasserbade zur Trockne eingedampft, so dann mit 20–25 ml Wasser aufgenommen. Die Aminchlorhydrat-Lösungen werden mit je 1 mMol $K_2[Pt(SeCN)_6]$ in 25–100 ml Wasser behandelt. Die ausgeschiedenen kristallinen Massen werden nach 15–30 Minuten stehenlassen abfiltriert, mit Wasser gewaschen und an der Luft getrocknet.

Die thermolytische Untersuchungen wurden mit einem Derivatograph MOM (Budapest) durchgeführt. Heizungsgeschwindigkeit: 20° /Min. Einwaage: 25-50 mg. Analyse. Das Platin wurde mikrogravimetrisch als metallisches Pt, der C, H, N — Gehalt gazvolumetrisch mit einem Perkin-Elmer-Apparat bestimmt.

LITERATUR

- 1. J. Zsakó, I. Gănescu, Cs. Várhelyi, Rev. Roumaine Chim., 13, 727 (1968).
- 2. R. Ripan, I. Gänescu, Cs. Várhelyi, Rev. Roumaine Chim., 11, 1051, 1057 (1966).
- 3. P. Spacu, C. Iancu-Costin, Anal. Univ. București, 41, 31 (1963).

- 4. P. Spacu, C. Iancu, Anal. Univ. București, 20, 59, 63 (1958).
- 5. A. M. Golub, V. A. Kalibaschuk, Zhur. neorg. Khim., 12, 2370 (1967).
- 6. P. Sakellaridis, M. Coromanyos, Bull. Soc. chim. France, 1965, 289.
- 7. A. K. Kolotkin, G. A. Skotnikova, Zhur. neorg. Khim., 7, 1548 (1962).
- 8. K. Michelson, Acta Chem. Scand., 17, 1811 (1963).
 9. A. Zh. Zhumbaev, E. P. Skrobogatko, Ukrain. Khine. Zhur., 39, 141 (1972).
 10. R. A. Bailey, S. L. Kozak, Inorg. Chem., 6, 319, 2155 (1967).
 11. A. Galliart, T. M. Brown, J. Inorg. Nuclear Chem., 34, 3568 (1972).
 12. O. B. Dr. Kozak, L. Kozak, Chem. 10, 1969 (1982).

- G. B. Buckton, J. prakt. Chem., 64, 68 (1855).
 J. W. Clarke, W. L. Dudley, Ber. dtsch. chem. Ges., 11, 1325 (1878).
 W. Peters, Z. anorg. Chem., 77, 182 (1912).
 G. Spacu, V. Armeanu, Bull. soc. stiinie, Cluj, 6, 543 (1931,32).

- 16. A. Sabatini, J. Bertini, Inorg. Chem., 4, 959, 1665 (1965); 5, 1025 (1966).
- 17. N. Yu. Kukushkin, G. N. Sedova, A. N. Belayev, L. V. Konovalov, Zhur. neorg. Khim., 25, 1036 (1980).
- 18. N. Yu. Kukushkin, G. Kh. Khamunev, G. N. Sedove, Zhur. neorg. Khim., 26, 2190 (1981).
- 19. N. Yu. Kukushkin, S. V. Bakhireva, L. V. Vrublevskaya, E. N. Kalyukova, Zhur. neorg. Khim., 25, 1302 (1980).

ÉTUDE EN SPECTROMETRIE DE MASSE DES ARYLSULPHONAMIDES THIOPHOSPHORORGANIOUES

II. Arylsulphonamides de l'acide diphénylthiophosphinique

RODICA POPESCU*, IOAN OPREAN*, NICOLAE PALIBRODA, et ZAHARIA MOLDOVAN****

Manuscrit recu le 19 juin 1988

Mass Spectroscopy Study on Thiophosphororganic Arylsulphonamides (II). Aryjsulphonamides of Diphenylthiophosphinic Acid. The mass spectra of the arylsulphonamides of the diphenylthiophosphinic acid were recorded and interpreted. The fragmentation pathways were established by means of metastable ion transitions and confirmed by high resolution determinations. Two main sequences were observed: - the elimination of a neutral SO₂ molecule - the cleavage of the N-S bond from the molecular ion or the N-Cary1 bond from the $M-SO_2$ ⁺ ion, both followed by the elimination of a tionic sulfur atom and, finally, giving the most abundant ion at m/e 200.

Introduction. Un mémoire a été consacré à l'étude en spectrométrie de masse des arvlsulphonamides de l'acide diéthylthiophosphinique [1]. En continuant ces travaux, nous nous proposons dans le présent travail de rapporter un étude sur le comportement sous l'impact électronique des arylsulphonamides de l'acide diphénylthiophosphinique

$$\begin{array}{cccc}
S & S \\
C_{6}H_{5} & P - NH - SO_{2} Ar \\
C_{6}H_{5} & P - NH - SO_{2} Ar \\
Ar = 4 - CH_{3} - C_{6}H_{4} \\
Ar = C_{6}H_{5}
\end{array}$$

Les résultats obtenus sur les deux classes de composés sont comparés afin de déterminer l'influence de la nature de deux radicaux liés à l'atome de phosphore sur les processus de fragmentation.

Partie experimentale. Les spectres de masse ont été enregistrés sur un spectrométre de masse Varian MAT 311, par le système d'introduction direct. L'énergie d'ionisation était de 70 eV et a température d'enregistration de 100 °C.

Institut de Chimie de Cluj-Napoca, 3400 Cluj-Napoca, Roumanie
 Institut de Technologie Isotopique et Moléculaire, 3400 Cluj-Napoca, Roumanie Eingegangen 21 juli 1988

Les transition métastables ont été détectées par la technique de défocalisation et par l'analyse directe des ions fragments.

Les mesures de masse en haute résolution on été éfectuées à une résolution de 10.000 (10% vale). Les substances étudiées ont été synthétisées d'après la procedure décrite dans le travail [2]

Résultats et discussions. Les résultats enregistrés sont rassemblés dans les Tableaux 1, 2 et 3.

						Ta	blean 1							Ta	blean 2
	Le s	pectre	de ma	asse d	u com	posé l	72		Le sj	pectre	de ma	sse du	com	osé I	I
e e	[%	e e	. 1 % .	e m	I º/•	e	[*/.	m	1 %	m e	T ^a la	e m	[%	m e	I%
39	2	109	4	156	1	217	23	39	2	93	1	152	3	216	1
44	1	110	1	170	21	218	3	40	1	94	2	153	1	217	12
46	7	111	1	171	1	219	1	44	6	97	3	154	4	218	2
47	1	122	25	183	8	232	З	46	9	107	3	155	1	219	1
51	5	123	3	184	2	233	3	47	1	108	2	157	2	232	4
63	2	124	16	185	4	290	6	50	2	109	6	170	1	233	4
65	5	125	2	186	1	291	2	51	10	110	4	183	14	234	1
77	12	138	· 2	197	1	306	2	52	1	122	18	184	з	276	4
78	3	139	15	198	1	307	4	63	3	123	2	185	4	277	.2
79	1	140	2	199	2	322	6	64	2	124	19	196	1	308	- 7
91	22	141	1	200	100	323	64	65	4	125	6	199	1 .	309	-43
92	3	152	2	201	19	325	13	66	1	126	1	200	100 -	310	8
106	2	153	5.1	214	20	354	۷	77	19	139	9	201	19	311	2
107	3	154	-7	215	6	387	1	78	9	140	5	202	2 -	373	4
108	3	-155	2 2	216	1		2	92	3	141	2	215	3		

Les données bibliographiques accessibles, ainsi que nos résultats expérimentaux, nous ont permis de proposer pour les deux composés les schémas de fragmentation illustrés par les Fig. 1 et 2.

Les transitions marquées d'un astérisque dans les schémas de fragmentation sont des transitions confirmées par des pics métastables. Il faut ajouter que les transitions métastables ont été enregistrées pour le composé I, pour le composé II celles-ci étant prises par analogie avec celles du premier composé.

Dans les deux spectres on retrouve les pics moléculaires, mais la faible abondance de ceux-ci, 2% pour le composé I et, respectivement, 4% pour le composé II, indique que les deux composés sont peu stables spus l'impact électronique. Les pics moléculaires nous ont permis de déterminer les masses moléculaires, ce qui confirme la structure proposée pour cette classe de composés [2].

Tableau 3

~	Formula	Masse	(m. m.)	
C	brute	calculée (m _c)	trouvée (mj.) ¹	(m u m)
370*	C 19 H17 NOPS2	370.0499	370,9035	5.5
	(м-он)			
323	C 19 H 19 NPS	323,0898	323.0289	5,9
307 -	C12 F-16 NO4	307,1126	307,1076	5.0
	(M-3-50)			
232	CI2H: MPS	232,0349	232 03:1	1,8
2 17	CIDHOPS	217,0241	217,0223	1,3
214	C ₁₂ E ₁₄ %₽	214,0736	214 0762	2.4
:00	ConHuilP	200,0629	200.0655	36
:93	C ₁₂ aP	183,0364	183.0356	6,6
••••;•	C6H, NOPS	169,9909	169.9007	0,2
155	C7HO2S	155,0168	1050(68	0.0
1541	C :2 ⊟.a	154, C782	154 0793	0,1
1542	C7HENOS	154,0327	154.0345	1,6
:35 1	CLH3PS	138,9780	133,9771	2,9
139 ₂	C7∺705	139,0218	139,0213	0,5
124	C ₆ H ₇ NP	124.0316	124,0292	2,4
122	CaHENP	122,0144	122,0160	1,6
109 *	CaH55	109,0112	10%,0110	0,2
108 *	Ciş∵işP	103,0129	108,0141	1,2
1071	C7H70	107, 0050	107.0051	O ,1
107,	C ₆ H₄P	107,0053	107,0051	0,2
<i>د</i> 31	۳S	62 9459	62 944 2	1,7
63*	CsH3	63 0235	63 02 19	1,6
÷0	HNP	45 9847	45 9346	<u>c:</u>

l.es mesures de masses exactes en haute résolution pour le composé I.

- ions qui ne sont pas passes dans le schema de fragmentatio

En examinant les spectres enregistrés on peut observer qu'il n'y a que deux pics avec une intensité plus grande que 25%.

L'ion de base pour les deux composés est l'ion à $\frac{m}{e}$ 200. Nous avous atribué à cet ion la structure suivante

Fig. 1. Le schema de fragmentation du composé I.

Fig. 2. Le schéma de fragmentation du composé II.

la formule brute de celui-ci étant déterminée par la mesure de masse exacte (voir le tableau 3). Dans le cas du premier composé il peut provenir de l'ion à $\frac{m}{e}$ 323 par la rupture de la liaison N-C, suivie de l'élimination de l'atome de soufre thyonique. Il peut aussi se former directement de l'ion moléculaire par la rupture de la liaison N-S, suivie de la perte d'un atome de soufre. A cause de l'imposibilité de la détermination des transitions métastables 323 \rightarrow 232 et 387 \rightarrow 232, toutes les deux voies restent plausibles.

La contribution de l'ion de base au courent ionique total est de $\Sigma_{39} = 22\%$, ce qui montre que celui-ci transporte presque un quart de courent ionique formé. La grande stabilité de cet ion peut être liée à l'extension du système d'électrons π appartenant aux deux radicaux phényle dans l'orbital p vacante de l'atome de phosphore, ce qui stabilise la charge positive de celui-ci.

Pour le deuxiéme composé sont possibles pour l'ion de base trois voies de formation (voir la Fig. 2).

Le deuxiéme pic abondant des spectres est le pic correspondant à l'ion $\frac{m}{e}$ 323 (I = 64%) pour le composé I et à l'ion $\frac{m}{e}$ 309 (I = 43%) pour le composé II, ions qui résultent des ions moléculaires par élimination d'une molécule neutre de SO₂ (voir les Fig. 1 et 2). Cette fragmentation est accompagnée d'un pic métastable. La formule brute de l'ion $\frac{m}{e}$ 323 a été déterminée par mesure de masse exacte (voir le Tableau 3). Pour cet ion ont été observées plusieurs fragmentations :

- l'élimination d'un radical HS• qui conduit à l'ion $C_{19}H_{17}NP^+$. Il faut remarquer que cet ion peut se former directement de l'ion moléculaire par élimination d'un radical HS• suivie de la perte d'une molécule neutre de SO₂, ainsi que l'ont montré les déterminations de transitions métastables.

- la rupture de la liaison P-N avec formation de l'ion $\frac{m}{2}$ 217 (I = 23%).

Celui-ci par une série de réactions de cyclisations détermine l'apparition d'ions caractéristiques aux composés qui possédent deux groupes phényle liés à l'atome de phosphore [3, 4]: $\frac{m}{e}$ 215 (phosphafluorényle); $\frac{m}{e}$ 185; $\frac{m}{e}$ 183; $\frac{m}{e}$ 154₁ (biphényle); $\frac{m}{e}$ 152. Les travaux [3] et [4] indiquent la formation de l'ion $\frac{m}{e}$ 154₁ à partir de l'ion $\frac{m}{e}$ 185 par élimination de l'atome de phosphore. Pour le composé I, à côté de cette voie, les déterminations de transitions métastbles indiquent plausibile une autre voie, celle de l'élimination du radical HNPS[•] de l'ion $\frac{m}{e}$ 232.

- la migration d'un radical phényle de l'atome de phosphore à l'atome de soufre suivie de l'élimination du radical $C_8H_5S^{\circ}$, avec la formation de l'ion $\frac{m}{e}$ 214.

Ce phénomène a été déja signalé pour des composés analogues [5, 6].

Pour le composé II l'ion $M-SO_2$]⁺. correspond à l'ion moléculaire du N-phénylamide de l'acide diphénylthiophosphinique.

$$\begin{array}{c} S \\ C_6 H_5 \\ C_6 H_5 \end{array} P - NH - C_6 H_5 \end{array}$$

L'étude du comportement de cette substance sous l'impact électronique a été éffectué par Spence et ses colaborateurs [6]. On observe que les ions à $\frac{m}{e}$ 217 et à $\frac{m}{e}$ 308 se retrouvent dans les deux spectres dans le même rapport d'abondance.

Le groupement arylsulphonamide est présent par les pics correspondants aux ions $\frac{m}{e}$ 155, $\frac{m}{e}$ 154₂, $\frac{m}{e}$ 139₂, $\frac{m}{e}$ 123, $\frac{m}{e}$ 107₁ pour le composé I, et par les pics correspondants aux ions $\frac{m}{e}$ 140, $\frac{m}{e}$ 141, $\frac{m}{e}$ 125, $\frac{m}{e}$ 109, $\frac{m}{e}$ 93 pour le composé II.

Il est à sigmaler que dans le spectre du composé I il y a plusieurs pics qui peuvent avoir une double origine. Il s'agit des pics $\frac{m}{e}$ 154, $\frac{m}{e}$ 139, $\frac{m}{e}$ 107 et $\frac{m}{e}$ 63. La haute résolution confirme ce point de vue.

e

En effet, le fragment $\frac{m}{e}$ 154 est associé à un doublet dont les formules brutes correspondent à C₁₂H₁₆, respectivement à C₇H₈ NOS (pour les autres

deux pics voir le Tableau 3). **Conclusions.** En faisant une comparaison entre les spectres de masse de deux arhylsulphonamides de l'acide diphénylthiophosphinique, on peut dire qu'il n'y a pas une différence semnificative en ce qui concerne les voies de fragmentations sous l'impact électronique. Dans le spectre du composé II on a retrouvé toutes les voies envisagées dans le cas du premier composé, avec une seule exception : l'élimination du radical HS· de l'ion moléculaire, fragmentation d'une contribution mineure même dans le spectre du composé I.

On remarque aussi que les deux spectres de masse sont dominés par le pre correspondant à l'ion à $\frac{m}{e}$ 200 avec la structure

ion avec une trés grande stabilité. La structure du groupement arylsulphona mide n'influe pas les processus de fragmentation de deux composés.

En faisant une comparaison entre les voies de fragmentation de l'ion $M - SO_2$ [†]. correspondant au composé I et du même ion provenant du p-méthyl-benzénsulphonamide de il'acide diéthylthiophosphinique, on observe que dans le deuxième cas il y a pluseurs possibilités de fragmentation que dans le premier cas. Les voies multiples de fragmentation de l'ion

$$(C_2H_5)_2P(S) - NH - SO_2 - C_6H_4 - CH_3]^+$$

sont dues aux possibilités de réalisation des fragmentations favorisées du point de vue énergétique : plusieurs emunations de molécules neutres d'éthyléne [1].

BIBLIOGRAFIE

- 1. R. Popescu, I. Oprean, N. Palibroda, Z. Moldovan, Stud. Univ. Babes-Bolyai, Chem. 33 (1), ..., (1988).

Bolyar, Chem. 33 (1), ..., (1986).
2. L. Almaşi, R. Popescu, L. Paskucz, Rev. Roumaine Chim., 24, 1, 3 (1979).
3. R. Collon, P. N. Porter, Austral J. Chem., 21, 2215 (1968).
4. I. Granoth, I. B. Levy, J. Chem. Soc. B, 1971, 239.
5. I. Granoth, J. B. Levy, C. Gimmers Jr., J. Chem. Soc. Perkin II, 1972, 697.
6. R. A. Spence, Y. M. Swun, H. B. Wright, Austral J. Chem., 22, 2359 (1969).

ANALYSE DES TECHNOLOGISCHEN HERSTELLUNGSPROZESSES VON AMMONIAK

ILIE SIMINICEANU* and ALEXANDRU POP**

Eingegange 21 juli 1988

Analysis of the Global Process of Ammonia Synthesis. An attempt is made to set out equations for the overall process of Ammonia synthesis. Based on such equations one can determine the "flow" capacity of materials entering the plant (natural gas, air, technological steam), as well as that of materials in the system (Ammonia and drain gas). Equations are minutely verified and, consequently, recommended to be employed in the estimation of best variants for the conventional installation. Thus, eight such variants are proposed to the end of obtaining increased conversion in the main technological processes for the synthesis gas output, as well as of using drain gas for higher revaluation of hydrogen. It is also shown that, by mere attachement to the installation of an H_2 separation block, an increase of 6.71 per cent in productivity or a decrease of 6.27 in energy consumption can be obtained.

Die Nahrung ist für das Leben des Menschen die wichtigste Energiequelle. Seit dem Anfang des XX-ten Jahrhunderts hat sich die Bevölkerung der Erde, verfünffacht und die "Malthus'sche Katastrophe" konnte nur durch neue Methoden in der Landwirtschaft verhindert werden: Mechanisierung, Bewässerung, Herstellung von Hybriden, Verwendung chemischer Düngemittel usw. Der Beitrag der chemischen Düngemittel zur Steigerung der landwistschaftlichen Produktrag der chemischen Düngemittel zur Steigerung der landwistschaftlichen Produktrag der demischen Düngemittel zur Steigerung der landwistschaftlichen

Die wichtigsten Düngemittel sind diejenigen die Stickstoff enthalten, sowohl was ihre Menge als auch ihre Wirkung auf das Wachstum der Pflanzen betrifft.

Zum Unterschied von anderen Elementen befindet sich der Stickstoff im freien Zustand in der Luft, in beinahe unbegrenzten Mengen. Seine Umwandlung in eine für die Pflanze verwendbare chemische Verbindung benötigt großen Energieverbrauch. Man schätzt, daß sich über jedem Hektar Erde etwa $0,77 \cdot 10^5$ Tonnen freier Stickstoff befindet. Für eine gute Ernte verbraucht man zur Zeit $0.8 \cdot 10^{10}$ Joule pro Hektar Ackerboden um die für eine gute Ernte notwendige Stickstoffmenge zu binden. Der Gesamtenergieverbrauch in der Stickstoffindustrie ist äquivalent mit $0.9 \cdot 10^8$ Tonnen Rohöl pro Jahr [2]. In Tabelle 1 sind die theoretischen und praktischen Energieverbrauche aufgezeichnet die für die drei Bindungsmethoden des atmosphärischen Stickstoffs notwendig sind : direkte Oxydation, Ammoniaksynthese, Binden in einen Komplex NX.

^{*} Politechnische Institut, Fakultät für Chemie, 6600 lasi, Romanien

^{**} Universität Cluj-Napoca, Fakultät für Chemie, 3400, Cluj-Napoca, Romänien

Methode des Fixieren	Direkte oxyda- tion $N_2 + O_2 = 2NO$	Synthese des Ammoniaks $N_2 + 3H_2 =$ $= 2NH_3$	$\begin{array}{l} \text{Komplexer Weg} \\ \text{N}_2 + 2 \mathbf{X} = \\ = 2 \mathbf{X} \mathbf{N} \end{array}$
Teorethischer Verbrauch	6,20	24,36	34
Erhältene industrielle Verbrauch	670,00	41,00	230,00
Energetisch erhälterne Effiziens, % Minimale vorhergesehener industriel	1,00 le	60,00	15,00
Verbrauch	80,00	30,00	-
tische Effiziens %	- 8,00	75,00	_

Der spezifische Energieverbrauch beim fixieren des Stickstoffs. 10^{-6} Kj/t N

Die direkte Oxydation zu NO ist vom thermodynamischen Standpunkt am günstigsten. Wegen kinetischen Barieren erreicht der Wirkungsgrad nur 1% beim Lichtbogenuerfahren und 8% bei der Variante Wisconsin. Auch bei der Verwendung der magnet ohnydrodynamischen oder der Kernenergie bleibt der Wirkungsgrad viel kleiner als bei der Ammoniaksynthese. Auch die "Komplexva riante" über Kalziumzynammid oder biologisch durch Mikroorganismen fordert größeren Energieverbrauch.

Der Vorteil der biologischen Methode besteht darin, daß anstelle von Brennstoffen die Sonnenenergie verwendet werden kann. Leider ist diese Methode noch nicht für große Produktionen anwendbar. Somit kann man behaupten, daß die Ammoniaksynthese vorläufig, sowohl energetisch als auch wirtschaftlich gesehen die effizientere Methode zur Herstellung der Stickstoffverbindungen ist. Deshalb werden die Bemühungen zur Energieersparung in Richtung Perfektionierung der Ammoniaksynthese orientiert.

Die eiste industrielle Anlage begann am 9 September 1913 in Deutschland Ammoniak herzustellen, mit einer Produktivität von 30 t/Tag. Sie war das Ergebnis der Forschungen von Haber mit der materiellen Hilfe von Bosch. Seither wurde der Prozess und die Apparate der Anlage ständig verbessert. Heute gibt es viele Variaten dieser Anlage. Alle enthalten jedoch drei grundliegende technologische Prozesse: Herstellung des Synthesegases, Reinigung des Synthesegases, Synthese des Ammoniaks.

Die erste Etappe, die Herstellung des Synthesegases ist entscheidend für die Ökonomie und die Energetik des ganzen Prozesses. Die Leistungen dieser Etappe hängen ihrerseits von dem Rohstoff ab, aus dem der Wasserstoff hergestellt wird, so wie aus Tabelle 2 hervorgeht.

Zur Zeit wird 80% der Ammoniakproduktion aus methanhaltigen Naturgasen erhalten. Die katalytische Reformierung des Naturgases bei 30-50 atm ist die effizienteste Herstellung des Synthesegases. Folglich müssen die Forschungen für Spartechnologien vor allem diesen Prozess behandeln. Bei diesem Prozess wird das Naturgas sowohl als Rohstoff (etwa 2/3) als auch als Energiequelle (etwa 1/3) verwendet. Der Verbrauch von Energie in der ganzen Anlage geht

[1] S. B. B. H. M.	14 5 E	the main and the second
Katalythisch Wasserstoffquellen	Spezifischer Energ 10 ⁻⁶ Kj/t	zieverbranch Relativen Koste N der Investition
the state of a state of the state of the	al de s	marken the set of the set
Kathalytische Reformierung des Methangases mit Wasserdampf	39,50	1,00
Reformierung der hoheren Koh-		
lenwasserstoffe	45,80	1,45
Partielle Oxydierung der schweren		and the second
Fraktionen	47,40	1,50
Vergasung der Kohle	71,20	1,80-2,10
TAL 1 1 1 TTT	142 40	2 20

zu 99,5% auf Kosten des Naturgases, wie aus der Tabelle 3 hervorgeht. Die größten Energieverluste werden ebenfalls bei der Synthesegos-Herstellung ver-zeichnet.

	- A						
The states		1.0	1.2	14 a 16 4	95	Tabelle	
		1.00				1. A.	

Eingeführte	Energie, 10 NH ₃)-3 Kj/t	a a"	Erhältene	Energi	e, 10-3 I	Kj/t NH _a	n ja 1. – Jan 1. – Jan	
Methangas Elektrische	37 Energie	7 300,00 200,00	Hergeste Wasse Elektrise Erhälten Zusamm Synthese	ellte Ammo rdampf he Energie des Syntl enpressung	niak, b Verlus iesegas	ei—33° ite		18400,0 3400,0 100,0 10600,0 3600,0 2400,0	0
Total	37 8	500,0	Total			and so a Al so a	37	500,0	

Die oben angeführten Daten zeigen die Wichtigkeit der verfahrenstechnischen Forschungen die zum Zweck die Verkleinerung des spezifischen Verbrauchs haben, besonders in Rumänien, welches mit einer Jahresproduktion von 3,5 Millionen Tonnen eine der größten Pro-Kopf-Produktion in der Welt besitzt. Diese Produktion ist außschließlich auf Naturgas gegründet, deren Verbrauch mit 3,5 Millionen Tonnen/Jahr Rohöl äquivalent ist. Wenn unter diesen Bedingungen der spezifische Verbrauch an Rohstoffen bloß um ein paar prozente verkleinert wird, können schon große Mengen erspart werden.

Die vorliegende Arbeit behandelt eine Bewerbungsmethode der Möglichkeiten der Energieeinsparung in den aktuellen Ammoniakanlagen. Die Methode verwendet die algebraische Bilanzgleichung und besteht aus zwei Etappen.

Analyse des gesamten technologischen Prozesses gefolgt von der synthese dieses Prozesses.

3 — Chimia nr. 1/1989

2.1 14 . · ·

In der ersten Etappe wird das mathematische Modell eines jeden Teilprozesses aufgestellt.

Analyse des technologischen Prozesses. Zu diesem Zweck geht man von einer konventionellen Anlage aus die in Figur 1 dargestellt wird. Diese enthält alle Prozesse in denen chemische Umwandlungen stattfinden.

Das Naturgas wird zuerst durch Entschwefeln gereinigt. Dieses geschiet durch katalytische Hydrierung. Als Wasserstoffquelle wird rückgeführtes Synthegas verwendet. Das gereinigte Naturgas wird mit Wasserdampf katalytisch oxydiert. (primäre Reformierung). Der weitere Umsatz von Methan und die Einführung des Luftstickstoffs geschieht bei der sekundären Reformierung. Das so erhaltene Syntesegas enthält neben Wasserstoff und Stickstoff große Mengen von Kohlenoxyden. Das Kohlenmonoxyd wird in zwei Stufen katalytisch in Kohlendioxid umgesetzt. Das Kohlendioxyd wird durch selektive Absorbtion in entsprechenden Lösungsmitteln entfernt. Die Spuren von Kohlenmonoxyd werden kathalytisch zu Methan hydriert. Das so erthaltene Synthesegas wird mit dem rückgeführten Gas vermischt und zur Synthese geleitet, die nicht reagierten Gase, aus denen das erhaltene Ammoniak getrennt wird, werden zum größten Teil zürückgeleitet. Ein Teil wird periodisch entfernt um eine konstante Menge des Inertgases aufrecht zu erhalten.

In den klassischen Anlagen werden die Ablaßgase im besten Fall als Brennstoff im Reformierreaktor verwendet. In Figur 1 wird ein Kühlblack gezeigt, der den Wasserstoff aus den Ablaßgasen abtrennt und diesen in die Anlage zürückführt. Diese Änderung beeinflußt die ganze Anlage. Der rückgeführte Wasserstoff führt vorerst zur der Änderung der eingeführten Luftmenge im sekundären Reformer, damit das Verhaltnis H_2/N_2 im Synthesegas, stöchiometrisch bleibt. Diese Änderung im sekundären Reformer beeinflußt die Reinigung des Synthesegases. Die quantitative Analyse der Einflusse der Rückführung des Wasserstoffes aus den Ablaßgasen auf die Leistung der gesamten Anlage, ist die zweite Aufgabe dieser Arbeit. Zu diesem Zweck werden die Bilanzgleichungen der einzelnen Reaktanten für jeden Teilprozess aufgestellt. Ebenfalls werden die Größen bestimmt welche experimentell gemessen werden und die Gleichungen für den Umsatze eines jeden Teolprozesses aufgestellt.

Die Reiningung des Naturgases. Dieses kann durch zwei unabhängige stöchiometrische Gleichungen definiert werden; die Umwandlung der schwefelhalti-

Fig. 1. Skeme des technologischen Prozesses.

34-
gen organischen Verbindungen in Schwefelwasserstoff (1) und seine Adsorption an eine Zinkoxydschicht (2).

$$S + H_2 = H_2S$$
 (1)
 $H_2S + ZnO = ZnS + H_2O$ (2)

Es werden die Umsatze definiert; η_s für Reaktion (1) und $\eta_{H,s}$ für Reaktion (2). Die Bilanzgleichungen der Reaktianten in der Gasfhase sind folgende;

$$n_{s} = n_{s}^{o} (1 - \mathcal{T}_{s})$$

$$n_{H_{2}} = n_{H_{2}}^{o} - n_{s}^{o} \mathcal{T}_{s}$$

$$n_{H_{2}0} = n_{H_{2}0}^{o} + n_{H_{2}s}^{o} \mathcal{T}_{H_{2}s}$$

$$n_{H_{2}S} = (n_{H_{2}S}^{o} + n_{S}^{o} \mathcal{T}_{s}) (1 - \mathcal{T}_{H_{2}s})$$

$$n_{A''} = n_{A''}^{o}$$
(3)

Mit A" werden die Komponenten aus dem Naturgas und dem rückgeführten Synthesegas bezeichnet, welche an den Reaktionen (1) und (2) nicht teilnehmen. Um die reelen Werte der beiden Umsätze zu bestimmen, müssen zwei Konzentrationen, X_s und $X_{H,S}$ in den Punkten 1 und 2 (siehe Figur 1) bestimmt werden.

Die primäre Reformierung. Im allgemeinen Fall der Verwendung von Naturgasen als Rohstoff, findet zu erst die Umwandlung der höheren Kohlenwasserstoffe in Methan statt, nach den Gleichungen (4), (5).

$$C_{j}H_{2j+2} + (j-1)H_{2} = jCH_{4}$$
 (4)
 $C_{j}H_{2j} + jH_{2} = jCH_{4}$ (5)

Die Reaktionen (4) und (5) finden ireversibil im ersten Teil des Reformierreaktors statt. Sie ändern bloß die Anfangskonzentrationen: die Konzentration von Methan steigt und die Menge des Wasserstoffs fällt, sowie es die Gleichungen (6) und (7) darstellen.

$$n_{CH_{L}}^{0*} = n_{CH_{L}}^{0} + \sum_{2}^{4} \dot{j} \cdot n_{CjH_{2j+2}}^{0} + \sum_{2}^{4} \dot{j} \cdot n_{CjH_{2j}}^{0} + \sum_{2}^{4} \dot{j} \cdot n_{CjH_{2j$$

Auf dieser Basis werden die Bilanzgleichungen für die Reaktionen (8) und (9) aufgestellt.

$$CH_4 + H_20 = CO + 3H_2$$
 (8)
 $CO + H_20 = CO_2 + H_2$ (9)

Es werden die Umsätze η_{CH_4} für Reaktion (8) und η_{CO} für Reaktion (9) definiert. Notiert man $\eta_{CH_4} = \alpha_1$ und $\eta_{CH_4} \cdot \eta_{CO} = \beta_1$ erhält man folgende lineare Gleichungen.

$$n_{CH_{L}} = n_{CH_{L}}^{\circ \circ} (1 - \alpha_{1})$$

$$n_{CO} = n_{CH_{L}}^{\circ \circ} (\alpha_{1} - \beta_{1})$$

$$n_{CO_{2}} = n_{CH_{L}}^{\circ \circ} \beta_{1}$$

$$n_{H_{2}} = n_{H_{2}}^{\circ \circ} n_{CH_{L}}^{\circ \circ} (3 \alpha_{1} + \beta_{1})$$

$$n_{A''} = n_{A''}^{\circ}$$
(10)

Mit A" werden die Inertgase bezeichnet; Stickstoff aus dem rückgeführten Synthesegas und eventuell aus dem Naturgas und Argon aus dem Wasserstoffstrom. Bestimmung der Umsätze α_1 und β_1 , werden die Gleichungen (11) und (12) verwendet.

$$\alpha_{1} = \frac{X_{CH_{4}}^{0*}(1 - X_{CO_{2}}) - X_{CH_{4}}(1 - X_{CO_{2}})}{X_{CH_{4}}^{0*}(1 + 3X_{CH_{4}} - X_{CO_{2}})}$$
(11)

$$B_{1} = \frac{X_{CO_{2}}(1+3X_{CH_{4}}^{0*}) - X_{CO_{2}}^{0}(1+3X_{CH_{4}})}{X_{CH_{4}}^{0*}(1+3X_{CH_{4}}^{-}X_{CU_{2}})}$$
(12)

Zur Bestimmung der Umsätze α_1 und β_1 , braucht man die Anfangszusammensetzung des Naturgases und die Molenbrüche X_{CH_4} und X_{CO_4} beim Ausgang des Reaktors (Kontrollpunkt 3). Die Größe $X_{CH_4}^{00}$ berechnet man mit der Gleichung (13).

$$X_{CH_{4}}^{0*} = \sum_{1}^{4} X_{C_{2}H_{2}}^{0} + \sum_{2}^{4} X_{C_{2}H_{2}}^{0}$$
(13)

36

In den Gleichungen (11) und (12) wird die Gegenwart von CO_2 in den Naturgasen und der Einfluss der Durchflußmenge des Synthesegases auf die Durchflußmenge des Naturgases beim Reaktoreintrit vernachlässigt.

Die sekundare Reformierung ist kein einheitlicher Vorgang. Zuerst wird' ein Teil des Wasserstoffs im Luftsauerstoff verbrannt (Gleichung 14) und

$$H_2 + 1/20_2 = H_20$$
 (14)

nachher folgt der katalytische Reformierungsprozess der mit den Gleichungen (8) und (9) beschrieben wird. Die experimentellen Daten zeigen, daß der Umsatz der Reaktion (14) 100% ist. Bezeichnet man $\eta_{CH_4} = \alpha_2$ und $\eta_{CH_4} \cdot \eta_{CO} = \beta_2$ erhält man die Gleichung (15).

$$n_{H_{2}} = n_{H_{2}}^{o} + n_{CH_{4}}^{o} (3\alpha_{2} + \beta_{2}) + n_{C0}^{o} \beta_{2} / \alpha_{2} - 2n_{O_{2}}^{o}$$

$$n_{CH_{4}} = n_{CH_{4}}^{o} (1 - \alpha_{2})$$

$$n_{CO} = n_{CO}^{o} + n_{CH_{4}}^{o} (\alpha_{2} - \beta_{2}) - 3n_{CO}^{o} \beta_{2} / \alpha_{2}$$

$$(15)$$

$$n_{CO_{2}} = n_{CO_{2}}^{o} + n_{CH_{4}}^{o} \beta_{2} + n_{CO}^{o} \beta_{2} / \alpha_{2}$$

$$n_{A}^{"} = n_{A}^{"}$$

Addiert man die Bilanzgleichung für Methan, Kohlenmonoxid und Kohlendioxied (Kohlenstoffbilanz) erhält man eine einfache Gleichung für die Durchflußmenge des Trockengases (16).

$$n_{g} = n_{g}^{\circ} \frac{X_{c0}^{\circ} + X_{c0_{2}}^{\circ} + X_{cH_{4}}^{\circ}}{X_{c0} + X_{c0_{2}}^{\circ} + X_{cH_{4}}^{\circ}}$$
(16)

Werden die Gleichungen (15) und (16) kombiniert erhält man die Benziehungen (17) und (18) durch die man die Umsätze α_2 und β_2 berechnen kann.

$$\boldsymbol{\alpha}_{2} = \frac{(X_{CO} + X_{CO_{2}}) X_{CH_{4}}^{\circ} - (X_{CO}^{\circ} + X_{CO_{2}}^{\circ}) X_{CH_{4}}}{(X_{CO} + X_{CO_{2}}^{\circ} + X_{CH_{4}}) X_{CH_{4}}^{\circ}}$$

$$\boldsymbol{\beta}_{2} = \frac{(X_{CO}^{\circ} + X_{CH_{4}}^{\circ}) X_{CO_{2}}^{\circ} - (X_{CO} + X_{CH_{4}}) X_{CO_{2}}^{\circ}}{(X_{CO} + X_{CO_{2}}^{\circ} + X_{CH_{4}}) (X_{CH_{4}}^{\circ} + X_{CO/\alpha_{2}}^{\circ})}$$
(18)

Um die Gleichungen (17) und (18) lösen zu können benötigt man drei Konzentrationen aus den Kontrolp unkten (3) und (4); (Figur I); das heisst vom Eingang und Ausgang des sekundären Reformers.

Der Umsatz des Kohlenmonoxides ist in beiden Stufen durch die Stoechiometrische Gleichung (19) beschrieben.

$$CO + H_2O = CO_2 + H_2$$
 (19)

Aus der Definition des Kohlenmonoxidumsatzes η_{co} erhält man die Bilanzgleichung (20)

triset .

$$n_{C0} = n_{C0}^{\circ} (1 - \gamma_{C0})$$

$$n_{C0_2} = n_{C0_2}^{\circ} + n_{C0}^{\circ} \gamma_{C0}$$

$$n_{H_2} = n_{H_2}^{\circ} + n_{S0}^{\circ} \gamma_{C0}$$

$$n_{A''} = n_{A''}^{\circ}$$
(20)

Mit A" bezeichnet man Argon, Stickstoff sowiee nicht umgesetztes Methan. Aus den Gleinchungen (20) erhält man die sekundäre Bilanzgleichung (21) mit der man die Durchflußmenge von Trockengas berechnen kann.

$$n_{g} = n_{g}^{o} \frac{1 + X_{CO}^{o}}{1 + X_{CO}}$$
(21)

Der Umsatzgrad kann mit Hilfe der Gleichung (22) bestimmt werden für die Änderung des CO im ganzen Prozess, als auch für jede einzelne Etappe.

$$\mathcal{Z}_{co} = \frac{X_{co}^{c} - X_{co}}{X_{co}^{c} (1 + X_{co})}$$
(22)

Die Beziehung zwischen dem Gesamtumsatz η_{co} und den Umsätzen in den beiden Etappen (η_1 und η_2) wird durch Gleichung (23) ausgedrückt.

$$\gamma_{co} = 1 - (1 - \gamma_1)(1 - \gamma_2)$$
 (23)

Absorption des Kohlendioxides. Durch Abkühlen wird der Wasserdampf kondensiert und nachher kann das Kohlendioxid durch selektive Absoption entfernt werden;

$$CO_2(I_q) = CO_2(I_q)$$
 (24)

38

Definiert man den Umsatz von Kohlendioxid $\eta_{co.}$ im Auflösungsvorgang (24) erhält man die einfachen Bilanzgleichungen der Gasphase (25).

$$n_{cO_2} = n_{CO_2}^o (1 - \gamma_{CO_2})$$

 $n_{A'} = n_{A''}^o$
(25)

Mit A" notiert man die anderen Komponenten des Trockengases (CH₄, Ar, N₂, H₂, CO) die sich nicht im Lösungsmittel auflösen. Verwandet man die sekundärenn Bilanzgleichungen erhält man die Beziehung zur Berechung der Durchflußmenge des Trockengases.

$$n_{g} = n_{g}^{o} \frac{1 - \chi_{CO_{2}}^{o}}{1 - \chi_{CO_{2}}^{o}}$$
 (26)

Somit erhält man die Gleichung des Umsatzes (27)

$$\gamma_{co_2} = \frac{\chi_{co_2}^{\circ} - \chi_{co_2}}{\chi_{co_2}^{\circ}(1 - \chi_{co_2})}$$
 (27)

Die Feinstreinigung durch Methanisierung ist ein katalytischer Vorgang der durch die stöchiometrischen Gleichungen (28) und (29) beschrieben wird.

$$C0 + 3H_2 = CH_4 + H_20$$

$$C0_2 + 4H_2 = CH_4 + 2H_20$$
(28)
(29)

Man definiert η_{co} und η_{co} , für die beiden Gleichungen (28 und 29) und stellt din Gleichungen (30) auf.

$$n_{c0} = n_{c0}^{\circ} (1 - \gamma_{c0})$$

$$n_{c0_{2}} = n_{c0_{2}}^{\circ} (1 - \gamma_{c0_{2}})$$

$$n_{H_{2}} = n_{H_{2}}^{\circ} - 3 n_{c0}^{\circ} \gamma_{c0} - 4 n_{c0_{2}}^{\circ} \gamma_{c0_{2}}$$

$$n_{cH_{4}} = n_{cH_{4}}^{\circ} + n_{c0}^{\circ} \gamma_{c0} + n_{c0_{2}}^{\circ} \gamma_{c0_{2}}$$

$$n_{A^{-}} = n_{A}^{\circ}$$
(30)

In diesem Fall stellt A" Stickstoff und Argon dar. Aus den sekundären Bilanzgleichungen stellt man die Bilanzgleichungen (31) für den Durchfluss des Synthese gases auf;

$$n_{g} = n_{g}^{\circ} \frac{1 - 3X_{CO}^{\circ} - 4X_{CO_{2}}^{\circ}}{1 - 3X_{CO}^{\circ} - 4X_{CO_{2}}^{\circ}} = n_{g}^{\circ} \gamma$$
(31)

Die beiden Umsätze können durch die Gleichungen (32) und (33) berechnet werden. At 1.4 2.1

Zur Berechung der numerischen Werte benötigt man die Molenbrüche des Kohlenmonoxides und Kohlendioxides (siehe Punkt 7 und 8 aus Figur 1). Wenn die Methanisierung gut funktioniert beträgt die Summe $X_{co} + X_{co} \leq 5 \cdot 10^{-6}$. Diese Bedingung muß erfüllt sein, weil die Kohlenoxide strake Katalysatorergifte für die Ammoniaksynthese sind. Aus diesem Grund besteht gewöhnlich die Beziehung $\eta_{co} = \eta_{co.} = 1$.

Die Ammoniaksynthese wird durch die stöchiometrische Gleichung (34) und die Bilanzgleichungen (35) und (36) beschrieben $\lceil 12 - 16 \rceil$

(34)

$$N_2 + 3/2H_2 = NH_3$$

$$n_{N_{2}} = n_{N_{2}}^{o} (1 - \gamma_{N_{2}})$$

$$n_{H_{2}} = n_{H_{2}}^{o} - 3 n_{N_{2}}^{o} \gamma_{N_{2}}$$

$$n_{NH_{3}} = n_{NH_{3}}^{o} + 2 n_{N_{2}}^{o} \gamma_{N_{2}}$$

$$n_{A''} = n_{A''}^{o}$$
(35)

$$n_{g} = n_{g}^{o} \frac{1 + X_{NH_{3}}^{o}}{1 + X_{NH_{3}}}$$
(36)

Bei diesem Vorgang sind die Inerte A" Methan und Argon (aus der Luft). Der Umwandlungsgrad des Stickstoffs wird durch die Gleichung (37) beschrieben.

$$\gamma_{N_2} = \frac{X_{NH_3} X_{NH_3}^{\circ}}{2 X_{N_2}^{\circ} (1 + X_{NH_3})}$$
(37)

and a second

1.1.1.1

Bei einem stoechiometrischen Verhaltnis der Reaktanten kann $X_{N_i}^0$ durch die Anfangskonzentration der Inertgase ersetzt werden (Gleichung (38).

$$X_{N_2}^{o} = \frac{1 - X_{NH_3}^{o} - X_{A''}^{o}}{L}$$
(38)

Sec. 2.

In den industriellen Anlagen ist der Umsatz des Stickstoffs bei einem Durchlauf sehr klein. Darum wird der gebildete Ammoniak abgetrennt und die nichtreagierten Reaktanten in den Reaktor zürückgeführt. Durch diese Rückführung kann ein vollständiger Umsatz des Stickstoffs erziehlt werden.

Die Trennung des Ammoniaks findet in mehreren Etappen statt. Zuerst wird das Gasgemisch stark abgekühlt, wobei des Ammoniak kondensiert. Im flüssigen Ammoniak lösen sich teilweise die Gase CH_4 , N_2 , H_2 , H_2 , H_2 , Ar. So enthält jede Phase alle fünf Komponenten. Um die realle Billanz zu lösen kann zuerst die Konzentration der Gase im flüssigen Ammoniak vernachlässigt werden. Der Fehler ist klein, weil die flüssige Phase 99,9% NH₃ enthält. Unter diesen Bedingungen ist die Bilanzgleichung für die Gasphase folgende;

$$n_{g} = n_{g}^{o} \frac{1 - X_{NH_{3}}^{o}}{1 - X_{NH_{3}}}$$
(39)

Mit Hilfe der Gleichung (39) und den Definitionsgleichungen der Umsätze der Phasenumwandlung erhält man die Gleichung (40) die für eine Komponente A des Fünfersystems NH_3 , Ar, N_2 , CH_4 , H_2 , gültig ist.

$$Z_{A_{i}} = 1 - \frac{(1 - X_{NH_{3}}^{\circ}) X_{A_{i}}}{(1 - X_{NH_{3}}) X_{A_{i}}^{\circ}}$$
(40)

Zur Berechnung der Umsatze η_{Ai} benötigt man die Molenbrüche der Gasphase (Kontrollpunkt 10 aus Figur 1). Die molaren Durchflüsse der Komponenten können aus Gleichungen (41) für die Gasphase und (42) fur die Flüssigkeitsphase bestimmt werden.

$$n_{A_{i}} = n_{A_{i}}^{o} (1 - \gamma_{A_{i}})$$

$$n_{A_{i}} = n_{A_{i}}^{o} \gamma_{A_{i}}$$
(41)
(41)
(42)

Die Abtrennung des Wasserstoffs aus den Abla β gasen findet in zwei Etappen statt. Zuerst wird das Ammoniak mit Wasser ausgewaschen und das Gass mit Molekularsieben getrocknet]17]. Das trockene Gas enthält Methan, Stickstoff, Argon, und Wasserstoff. Durch Abkühlen dieses Gemisches kondensiert Methan und teilweise der Stickstoff. In der gebildeten Flüssigkeit Isen sich kleine

I. SIMINICEANU, AL. POP

Mengen von Argon und Wasserstoff. Somit erhält man zwei Phasen; eine Gasphase die viel Wasserstoff enthält; und eine flüssige Phase die viel Methan und Stickstoff enthält. Durch Entspannen der flüssigen Phase erhält man die notwendige Kühltemperatur zur Verflüssigung. Nach dem Anlassen der Anlage funktioniert diese autotherm. Tabelle 4 zeigt den Massenbilanz einer solchen Anlage [2].

Tabell 4

Kompo- nent	Kond tem- peratur, K	Initial Ablaßgas % Vol.	Wiederver wendeter Wasserstoff % Vol	Verbrennungsgas % Vol.	
H,	20,4	62,90-63,70	86,90-87,80	14,20 — 15,30	
N,	77,4	20,69 - 21,20	9,90-10,30	41,20-43,40	
Ar	87,3	5,335,44	1,30 - 1,50	13,00 - 13,30	
CH,	111.7	10,19-10,78	0.91 - 1.05	29.20 - 31.20	
NH,	239,8 1,50-2,50		0,00	0,00	
Fotal Deb	it m ^s /h	16425.0	10945.0	5480.0	
Druck.	atm.	74.0	65.0 - 67.0	3.2 - 3.3	
Temperatur. °C		-20.5	15.5	15.5	

Materiali Bilanz und die Arbeitsparameter für eine Instalation: für dass trenarm des Wassertoffs von Ablapgasen

Bei den aktuellen Leistungen eines solchen Trennungsprozesses ist es sehr schwer die Methode der nichtumgewandelten Komponenten anzuwenden. Deshalb definiert man durch Gleichung (43) einen Gesamtwirkungsgrad der Trennprozesses.

$$\gamma_{sep} = \frac{n_{gp}^{\circ} - n_{gp}}{n_{gp}^{\circ}}$$
(43)

Der Trennsirkungsgrad der Komponenten des Ablaßgases η_{Ai} , kann durch die allgemeine Beziehung (44) berechnet werden, wenn die experimentellen Werte der Konzentrationen, der Anfangs und Enddrunchflüsse bekannt sind.

$$\mathcal{T}_{A_1} = 1 - \frac{n_{gc} X_{A_1}}{n_{gp}^{\circ} X_{A_1}^{\circ}}$$
(44)

Vernachläßigt man die Methanmenge aus dem rückgesführten Gas erhält man die Gleichungen (43') und (44').

$$\mathcal{T}_{sep} = \frac{X_{CH_4} - X_{CH_4}^{\circ}}{X_{CH_4}}$$

$$\mathcal{T}_{A_1} = 1 - \frac{X_{CH_4}^{\circ} X_{A_1}}{X_{CH_4} X_{A_1}^{\circ}}$$
(43')

42

Für die Gleichungen (43') und (44') benötigt man nur die gemessenen Konzentrationen. Verwendet man diese Beziehungen für die Anlage, von der die Daten aus Tabelle 4 stammen, erhält man die Werte: $\eta_{\text{trenn}} = 0,66$; $\eta_{\rm NH_*} = 1.00$; $\eta_{\rm H_*} = 0.92$; $\eta_{\rm N_*} = 0.32$; $\eta_{\rm Av} = 0.17$; $\eta_{\rm CH_*} = 0.06$. Die Fehlerabweichung beträgttl, 0-3,0%. Für genauere Berechnungen müßen die Gleichungen (43) und (44) verwendet werden.

Schlussfolgerung. Mit Hife der erhältenen Gleichungen kann ein Computerprogramm für die Analyse einer existenten Anlage aufgestellt werden. Als Eingangsdaten dienen die angegebenen gemessenen Parameter. Ebenfalls kann der spezifische Verbrauch der Reaktanten berechneten werden sowie die Möglichkeiten seiner Reduzierung. Andere - Anwendungsmöglichkeiten sind: Berechnung des Gesamtwirkungsgrades der Anlage, Perfektionierung des technologischen Prozesses, Bestimmung der Leistungen einer neuen Technologie.

Benennungen und Indexe

Α	-	Komponent der Reaktionsmasse
A″	_	Inertkomponent
4		Anzahl der Kohlenstoffahon aus der Kohlenwasserstoffen des Naturgasse

- Anzahl der Kohlenstoffahon aus der Kohlenwasserstoffen des Naturgasses
- molare Durchflußmenge des Komponenten Ai nAi
- XAi - Molenbruch des Komponenten Ai, in Bezug auf das Trockengas
- Umsätze bei der Reformierung α, β
- Koeffizient der Anderung der Molarzahl bei der Methanisierung, definiert durch die ۲ Gleichung (31)
- Umsatz des Komponenten Ai 71.45

η1, η2 - Umsätze des Kohlenmonoxides in der ersten bzw zweiten Stufe

Obere Indexe

- Anfangszustand eines Verganges oder des ganzen Systems.

Untere Indexe

- Synthesegas gs
- Ablaßgas gp
- Naturgas gn

LITERATUR

- C. Calistru, C. Leonte, I. Siminiceanu, C. Hagiu, "Tehnologia îngrășămin-telor minerale", Editura tehnică, București, 1985, p. 1.
 A. I. More (Editor), "Fertilizer Nitrogen, Proceedings of The British Sulphur Corporations
- Fourth International Conference on Fertilizer Technology". London, 19-21 January, 1981.
- 3. I. Siminiceanu, C. Calistru, Mem, sect. st. Acad. R.S.R., 5 (1), 189, (1982).
- 4. C. Calistru, I. Siminiceanu, C. Hagiu, C. Petrilă, Rev. Chim (București) 24, 880, (1973).

- C. Calistru, I. Siminiceanu, Rev. Chim. (București) 31, 50 (1980).
 I. Siminiceanu, C. Calistru, Mem. sect. șt. Acad. R.S.R., 3 (1) 241, (1980).
 C. Calistru, I. Siminiceanu, C. Hagiu, C. Petrilă, Rev. Chim. (București) 26, 1003 (1975).
- 8. C. Calistru, I. Siminiceanu, Rev. Chim., (Bucuresti), 24 785 (1973).

- 9. C. Calistru, I. Siminiceanu, Rev. Chim. (București), 25, 285 (1974). 10. P. Rotaru, I. Siminiceanu, L. Ungur, S. Blejoiu, L. Bucur, Rev. Chim. (București) 31, 149 (1980).
- 11. I. Siminiceanu, P. Rotaru, L. Ungur, S. Blejoiu, L. Bucur, Rev. Chim. (București), 32, 41 (1981).
- 12. I. Siminiceanu, C. Calistru, Bul. Inst. Politehnic. Iași, 25 (3/4), S 2, 63 (1979).
 13. I. Siminiceanu, C. Calistru, Bul. Inst. Politeh. Iași, 27 (1/2), S 2, 62 (1981).
 14. I. Siminiceanu, C. Petrilă, Rev. Chim. (București) 34, 1018 (1983).

- 15. C. Calistru, C. Leonte, I. Siminiceanu, Bul. Inst. Politeh. Iasi, 26 (3/4), S 2, 87 (1980).

.

1

- 16. I. Siminiceanu, C. Petrilă, A. Pop, Chem. Techn. (Leipzig), 35, 628 (1983).
- 17. G. Stentzel, K. Schmidt, Rev. Chim. (București), 36, 229 (1985).

SYNTHESE DES GESAMTHERSTELLUNGSPROZESSES VON AMMONIAK

I. SIMNICEANU* und AL. POP**

Eingangen 21 Juli 1988

Analysis of the Ammonia-Producing Technological Process. A standard Ammoniaproducing plant is consdiered, with its basic processes. For each component process of the installation are set balance algebraic equations which, to be used, imply solely experimentally measured parameters. Such equations can be employed in the determination of specific consumptions and the ways to diminish them, the overall output of the plant and of new technologies.

In der vorhergehenden Arbeit [1] wurden die algebraischen Bilanzgleichungen für jeden Teilprozzes einer Ammoniakanlage aufgestellt. Mit diesen Gleichungen werden in dieser Arbeit die globalen Bilanzgleichungen aufgestellt mit denen die Durchflußmengen des Naturgases, der Luft und des techologischen Dampfes berechnet werden, die für eine bestimmte Produktion notwendig sind. Diese Gleichungen ermöglichen durch die Berechnung der Durchflußmenge des Ablaßgases, die Mengen der Inertgase im Synthesezyklus konstant zu halten. Die Gleichungen erhält man aus den Bilanzgleichungen für die einzelnen Komponenten die für die Teilprozesse aufgestellt wurden und die nach dem Blockschema [1] zusammengefügt werden. Aufgrund der Gleichungen kann eine Synthese des globalen technologischen Prozesses durchgeführt werden.

Die Durchflußmenge der technologischen Luft; wird berechnet indem man von der Bedingung ausgeht, daß das Molverhältnis der Reaktanten im Synthesegas der Stöchiometrie entspricht.

$$\left(\frac{n_{H_2}}{n_{N_2}}\right) = 3.0 \tag{1}$$

Die Stickstoffbilanz für den gesamten technologischen Fluß wird durch die Beziehung (2) beschrieben.

$$n_{N_2}^{\circ} = (n_{N_2})_{prod} + (1/2 n_{NH_3})_{gp} + (n_{N_2})_{gp}$$
 (2)

Analog wird die Wasserstoffbilanz erhalten

$$n_{H_2}^{\circ} = (n_{H_2})_{prod}^{\circ} + (3/2 n_{NH_3})_{gp}^{\circ} + (n_{H_2})_{gp}$$
 (3)

Politechnische Institut, Fakuität für Chemie, 6600 Iaşi, Romänien
 Universität Cluj-Napoca, Fakultät für Chemie, 3400 Cluj-Napoca, Romänien

I. SIMINICEANU, AL. POP

Der Stickstoff wird durch die Luft in das System eingeführt (78% N_2) Kleine Stickstoffmengen befinden sich auch im Naturgas

$$n_{N_2}^{\circ} = 0,78 n_{aer}^{\circ} + n_{g.n.}^{\circ} X_{N_2}^{\circ}$$
 (4)

Der Wasserstoff $(n_{H_i}^0)$ entsteht durch die Reaktion zwischen Methan und Wasser, bzw. Kohlenmonoxied und Wasser. Von diesem Wasserstoff müßen die Mengen abgezogen werden die bei der Reinigung, sekundären Reformierung und Methannisierung verbraucht werden. Werden die Bilanzgleichungen zusammengesatzt erhält man die Gleichung (5).

$$n_{H_2}^{\circ} = n_{gn}^{\circ} \cdot F_1'(2) - 0.42 n_{aer}^{\circ}$$
 (5)

$$F'_{1}(?) = X^{\circ*}_{CH_{4}}F_{1}(?) - \sum_{2}^{4} (j-1)X^{\circ}_{C_{3}H_{23}+2} - 2X^{\circ}_{0_{2}}$$
(6)

$$F_{4}(7) = F_{1}(\alpha, \beta) + \mathcal{C}_{co} \cdot F_{2}(\alpha, \beta) - 3(1 - \mathcal{C}_{co}) \cdot F_{2}(\alpha, \beta) - 4[F_{3}(\alpha, \beta) + \mathcal{C}_{co}F_{2}(\alpha, \beta)](1 - \mathcal{C}_{co}) (7)$$

$$F_{1}(\alpha,\beta) = 3\alpha_{1} + \beta_{1} + (1 - \alpha_{1})(3\alpha_{2} + \beta_{2}) + (\alpha_{1} - \beta_{1})\beta_{2}/\alpha_{2} \qquad (8)$$

$$F_{1}(\alpha,\beta) = 3\alpha_{1} + \beta_{1} + (1 - \alpha_{1})(3\alpha_{2} + \beta_{2}) + (\alpha_{1} - \beta_{1})\beta_{2}/\alpha_{2} \qquad (9)$$

$$F_{3}(\alpha,\beta) = \beta_{1} + (1-\alpha_{1})\beta_{2} + (\alpha_{1}-\beta_{1})\beta_{2}/\alpha_{2}$$
(10)

Werden die Gleichungen (2, 3, 4, 5) in die Gleichung (1) eingesetzt, erhält man ;

$$n_{aer}^{\circ} = \frac{n_{gn}^{\circ} \left[F_{1}^{\prime}(2) - 3X_{N_{2}}^{\circ} \right] - n_{gp}(X_{H_{2}} - 3X_{N_{2}})}{2,76}$$
(11)

In einer konventionellen Anlage, ohne Verarbeitung der Ablaßgase besteht die Beziehung $X_{H_a} = 3 X_{N_a}$. Setzt man diese Beziehung in die Gleichung 11 ein erhält man;

$$n_{aer}^{\circ} = n_{gn}^{\circ} / 2,76 \cdot [F_1'(\mathcal{T}) - 3X_{N_2}^{\circ}]$$
 (11')

In diesem Fall hängt die Durchflußmenge der Luft nicht von der Zusammensetzung und der Durchflußmenge des Naturgases sowie von der Funkti on $F'_1(\eta)$ ab, welche die Umsätze der Herstellungsprozesse des Syntesegases enthält [2-3]. Die Durchflußmenge des Endproduktes Ammoniak kann sowohl aus der Stickstoffbilanz als auch aus der Wasserstoffbilanz erhalten werden. Wenn man von der Gesamtbilanz des Stickstoffs ausgeht, erhält man

$$n_{NH_3} = 2(0,78 n_{aer}^{\circ} + n_{gn}^{\circ} X_{N_2}^{\circ} - n_{gp} X_{N_2}) - n_{gp} X_{NH_3}$$
(12)

Wenn man in diese Gleichung den Ausdruck der molaren Durchflussmenge der Luft einsetzt erhält man:

$$n_{NH_{3}} - n_{gp} \left[0.565218 \cdot F_{1}^{*}(7) + 0.304346 \times F_{1}^{*} - n_{gp} \left(\times F_{1}^{*}(7) + 0.304346 \times F_{1}^{*}($$

Für die konventionellen Anlagen, wo die Ablaßgase nicht verarbeitet werden und $x_{H_1} = 3 x_{N_1}$ erhält die Gleichung (13) eine vereinfachte Form.

$$n_{NH_3} = n_{gn}^{\circ} [0,565218 \cdot F_1'(\mathcal{T}) + 0,304346 \times N_2] - n_{gp} (\times N_{H_3} + 2/3 \times H_2) (13)$$

Zur Lösung der Gleichung (13) benötigt man die Durchflußmenge der Ablaßgase

Die Durchflußmenge der Ablaßgase erhält man aus der Bilanz der Inertgase ($CH_4 + Ar$). Die Menge der Inertgase die durch das frische Synthesegas eingeführt wird muß gleich der Menge der Inertgase aus dem Ablaßgas sein.

$$n_{gs}^{\circ}(X_{CH_{4}}^{\circ}+X_{Ar}^{\circ}) = n_{gp}(X_{CH_{4}}+X_{Ar})$$
 (14)

Wenn man in Betracht zieht, daß Argon nur durch die Luft (1% Ar) und Methan nur durch das Synthesegas zugeführt wird, erhält man die Gleichung (14').

$$(n_{CH_4}^{\circ})_{gs} + 0.01 n_{aer}^{\circ} = n_{gp} (X_{CH_4} + X_{Ar})$$
 (14')

Die molare Durchflußmenge des Methans aus dem Synthesegas erhält man aus der Partialbilanz für diese Komponente.

$$(n_{CH_4}^{\circ})_{gs} = n_{gn}^{\circ} X_{CH_4}^{\circ*} \cdot F_2(\mathcal{C})$$
(15)

$$F_{2}(\mathcal{V}) = (1 - \alpha_{1})(1 - \alpha_{2}) + F_{4}(\alpha_{1}\beta) \cdot (1 - \mathcal{V}_{\infty}) + \left[F_{3}(\alpha_{1}\beta) + \mathcal{V}_{\infty} \cdot F_{4}(\alpha_{1}\beta)\right](1 - \mathcal{V}_{\infty 2})(16)$$

$$F_{4}(\alpha_{1}\beta) = \alpha_{1} - \beta_{1} + (1 - \alpha_{1})(\alpha_{2} - \beta_{2}) - 3(\alpha_{1} - \beta_{1})\beta_{2}/\alpha_{2} \quad (17)$$

Aus den Gleichungen (10) und (14') erhält man die Durchflußmenge der Ablaßgase (18), die von der Durchflußmenge und der Zusammensetzung des Naturgases, der Durchflußmenge der Luft, der Konzentration der Inertgase aus dem Ablassgas und von der Funktion $F_2(\eta)$ abhängt, welche die Umsätzte der chemischen Prozesse enthält.

$$n_{gp} = \frac{n_{gn}^{\circ} \cdot X_{CH_4}^{\circ*} \cdot F_2(\gamma) + 0.01 n_{aer}^{\circ}}{X_{Ar} + X_{CH_4}}$$
(18)

Die Durchflußmenge des Naturgases, n_{gn}^{0} , kann mit der Gleichung (13) berechnet werden, wenn die Ammoniakproduktion festgelegt wird.

Der technologische Dampfverbrauch erhält man, wenn man das anfängliche Molverhältnis $n_{H_1O}^0/n_{C_1}^0$, beim Eingang in den primären Reformer kennt.

$$n_{H_{2}0}^{\circ}/n_{C}^{\circ} = n_{H_{2}0}^{\circ}/n_{CH_{4}}^{\circ*} = n_{H_{2}0}^{\circ}/n_{gn}^{\circ} \left[\sum_{1}^{4} X_{C_{3}H_{2}}^{\circ} + \sum_{2}^{4} X_{C_{3}H_{2}}^{\circ}\right]$$
(19)

Dieses Verhältnis ist ein wesentlischer technologischer Parameter, nicht nur für die Reformierung sondern für die ganze Anlage, weil sein Wert direkt den Energie verbrauch und die Ausbeute der Reformierung und des Umsätzes des Kohlenmonoxids beeinflußt.

In den konventionellen Anlagen beträgt der Wert diesses Verhältnisses 3,5-4,0. Die Tendenz der Verringerung des Energiekonsums die Verkleinerung dieses Verhaltnißes zu Werten zwischen 2,5-3,0.

Ergebnisse, Schlussfolgerungen. Die Gleichungen die in Folge der Analyse und der Synthese des globalen technologischen Prozesses der Ammoniakherstellung aus Naturgasen aufgestellt wurden können zu verschiedenen praktischen Zwecken verwendet werden; zur Analyse einer bereits bestehenden Anlage, mit Hilfe des Elektronenrechners, aufgrund der direktgemessenen Parameter, zur Bestimmung des spezifischen Verbrauchs und der Möglichkeiten ihrer Reduzierung, Bestimmung des Gesamtwirkungsgrades der Anlage, Perfektionierung des tehnologischen Prozesses uns Auswertung der Leistungen der neuen Technologie.

Bevor die angeführten Varianten angewendet werden, müssen die mathematischen Modelle gewählt werden. Zu diesem Zweck verwendet man eine konventionelle Anlage, deren Struktur durch das allgemeine Schema [1] dargestellt wird. Die Zusammensetzung des Naturgases in Volumenprozenten beträgt; 8% CH₄, 3,5% C₂H₆, 0,59% O₂, 1,5% C₈H₈; 1% C₄H₁₀; 1,01% CO₂; 8,6 % N₂. Die Produktivität der Anlage beträgt 908 t/24 h sie verbraucht 1071,5 kmol/h Naturgas, das Verhaltnis H₂O/C bei der Reformierung ist 3,5 und die Synthese findet bei 150 atm statt. Die Mittelserte der in dieser Anlage gemessenen Konzentrationen sind in Tabelle (1) eingetragen.

Experimentelle	Werte der	Konzentrationen	Molen bru	iche bruche im	"getrocknete	en Gas")
Berechnungspunkt Fig. 1	3	4	5	6	7	8
Komponent						
CH ₄ CO ₂ CO	0,0985 0,1008 (0,0977)	0,0035 0,0764 0,1270	(0,0031) (0,1554) 0,0306	(0,0031) (0,1764) 0,0050	(0,037) (0,0010) (0,0061)	(0,0111) (0,000) (0,000)
		and the second				

Mit Hilfe dieser Daten und der Gleichungen aus [1] werden die realen Umsätze der Teilprozesse berechnet. Die gemessenen Konzentrationen die nicht für die Berechnungen notwendig sind werden in Klammern eingetragen. Er ist die kleine Anzahl der Werte zu unterstreichen; zwei Konzentrationen für die Reformierung und Methannisierung, drei Konzentrationen für die sekundäre Reformierung und je eine für den Umsatz des Kohlenmonoxids und die Absorbtion des Kohlendioxids, Die Anzahl der notwendigen Werte ist gleich der Anzahl der unabhängigen stöchiometrischen Gleichungen. Die Werte der Umsätze die aufgrund der Daten aus Tabelle (1) erhalten werden sind in Tabelle (2) aufgezeichnet.

Reele Umwandlungen der Prozesse

Tabelle 2

Prozess	Umwand-	Berechnete Werte	Berechnete	Fehler		
	lungen	aus der Definitions-	Konzen	%		
		gleichung	Gleichung	Wert	/0	
Primäre Reformierung	$\beta_1^{\alpha_1}$	0,665225 0,333194	(11) (12)	0,676595 0,321543	$+1,6804 \\ -3,6234$	
Sekundäre Reformierung	α_2	0,949424	(17)	0,949016	0,0429	
	β_2	0,044080	(18)	0,044026	0,1226	
Globalprozess der Reformierung	α	0,983069	(64)	0,983512	+0,0450	
Umwandlung des Kohlenstoffoxie	d η ₁	0,746640	(22)	0,736517	0,0167	
	η ₂	0,832526	(22)	0,832438	0,0010	
	η _{CO}	0,955895	(23)	0,955895	0,0048	
Absorption des Kohlenstoffdio- xids	η_{CO_s}	0,995303	(27)	0,995326	0,0023	
Met hanisierung	η _{CO}	1,000000 -	(32)	1,000000	0,0000	
	η _{CO2}	1,000000	(33)	1,000000	0,0000	

Die Daten aus Tabelle 2 dienen zur Auswertung der Genauigkeit der aufgestellten Gleichungen. Wie erwartet sind die Abweichungen grösser bei der Berechnung der Umsätze bei der Reformierung (Gleichungen 17, 12, 11, 18) weil

I. SIMINICEANU, AL. POP

diese Gleichungen vereinfacht sind; die direkt eingeführte Dampfmenge aus dem sekundären Reformer wurde vernachlässigz, die Menge des rückgeführten Synthesegases ist viel kleiner als die Menge des Naturgases. Die Abweichungen haben jedoch einen kleinen Einfluss auf die Berechnungen für das gesamte System. Wenn man den Gesamtumsatz der Reformierung durch Gleichung (20) definiert sinkt die Fehlabweichung auf 0,045%.

$$\alpha = (1 - \alpha_1) (1 - \alpha_2). \tag{20}$$

Die Abweichung bei der Berechnung der Umsatze β_1 und β_2 haben einen geringen Einfluss auf die Genauigkeit des Gesamtmodells. Bei der Bestimmung der anderen Umsätze uberschreiten die Abweichungen nicht 0,0167%.

Die Interpretationwerte aus Tafel 2 erlauben die Bestimmung der Verbesserung der Verbesserungsreserven eines jeden Teilprozess. Die Absorption des Kohlendioxids in aktivierten Kaliunkarbonatlösungen hat einen Umsatz von 0,995326, der des Kohlenmonoxids in beiden Stufen beträgt 0,955895 und kann stark verbessert werden. Die Verringerung des Kohlenmonoxidgehaltes bevorzugt auch die Methanisierung und senkt auch den Methangehalt des Synthesegases Wichtige Reserven gibt es auch bei der Reformierung deren Gesamtumsatz $\alpha = 0,983512$. Die Tendenz der Verkleinerung des Verhältnisses H₂O/C bei der Reformierung, obwohl sie energetische Vorteile hat senkt den Umsatz und hat negative Efekte auf den Umsatz des Kohlenmonoxiedes. Deshalb kann der Verbrauch des technologischen Dampfes nur dann gesenkt werden, wenn gleichzeitig die Aktivität der Katalysatoren und der Umsatz des Kohlenmonoxids gesteigert wird.

Weiterhin wurden die Gleichungen (11) (13) und (12) für die Berechnung der Durchflussmengen der Luft, Ammoniak und Ablassgase getestet. Mit Hilfe der Umsätze aus Tafel 2 werden zuerst die Funktionen $F_1(\eta)$; $F'_1(\eta)$ und $F_2(\eta)$ berechnet. Die Ergebnisse sind in Tabelle 3 aufgezeichnet.

Tabelle 3

Große	Direkt gemeßene Werte Kmol/h	Berechneter Werte Kmol/h	Fehler %	Elemente zum bere- chnen
Luftdebit Ammoniakdebit Ablaßdebit	1539,66 2226,6968 402,07	1536,4526 2232,6869 413,3968	-0,2087 + 0,2941 + 2,7399	$\begin{array}{l} F_1(\eta) = 3,804696 \\ F_1(\eta) = 3,975638 \\ F_2(\eta) = 0,047223 \end{array}$

Probe dess Modells der Global-Bilanz

Werden die berechneten Werte mit den direkt aus der Anlage gemessenen verglichen erhält man die Genauigkeit der aufgestellten Gleichungen. Die Gleichung (18) vermachlässigt die Gasmenge die in flüssigem Ammoniak aufgelöst ist, der einen Reinheitsgehalt von 99, 912 hat. Darum ist die Fehlerbweichung bei der Berechnung der Durchflussmenge der Ablassgase grösser; +2,7399%. Die Gleichungen (11) und (13) haben jedoch eine mehr als befriedigende Genauigkeit.

SYNTHESE DES GESAMTPROZESSES VON NH:

Im allgemeinen kann man behaupten, dass die Bilanzmodelle zur Bereitung der Leistungen von Anlagen, wie sie in [1] beschrieben sind verwendet werden können, abenso auch von perfektionierten Varianten. Aus dieser Sicht werden zwei Verbesserungsrichtungen vorgeschlagen. Verwertung der Ablassgase mit Rückführung des rückgewonnenen Wasserstoffs (Variante B) und Optimisierung der chemischen Vorgange zwecks Steigerung der Umsätze (Varianten I-IV). Die acht erhaltenen Varianten werden in Tabelle 4 schematisch dargestellt.

Tabelle 4

Verbesserte vovgeschlagene tehhnologische Varlaten							
Verbesserung des Prozesses Verwertung	I	11	111	IV			
Ohne Verarbeitung (A) des Ablaßgases	Bei aktuel- len Parameter	Verbesserte Absorption des CO_2 $\eta_{CO_3} \rightarrow 1,0$	Verbesserte Absorption des CO_2 $\eta_{CO_3} \rightarrow 1,0$ $\eta_{CO} \rightarrow 1,0$	Verbesserung der Absorp- tion CO ₃ , Umwardlung $\eta_{CO_3} \rightarrow 1.0$ $\eta_{CO} \rightarrow 1.0$ $\alpha \rightarrow 1.0$			
Mit Verarbeitung (B) des Ablaßgases	<i>a</i> 9		18				

Für jede Variante werden mit den Gleichungen (11) (13) und (18) Berechnungen angestellt. Die Leistungen der Varianten werden durch die prozuentelle Steigerung der Ammoniakproduktion und die Reduzierung des Naturgasverbrauches in Vergleich zur Variante 1_A ausgedruckt. Für Variante B wurde ein gesamter Abscheidegrad der Ablaßgase verwendet, entsprochend der Daten aus Tabelle 4 [1]. Die Endergebnisse sind in Tabelle 5 eingetragen.

Tabelul 5

	J	Bestleiststungen der	vergeschlagenen	Varianten.	
Variante		I	II	111	IV
Elemente für die Berechnung	$ \begin{array}{c} \mathbf{F}_1(\eta) \\ \mathbf{F}_1(\eta) \\ \mathbf{F}_3(\eta) \end{array} $	3,804696 3,976638 0,047223	3,822562 3,994803 0,042904	3,934045 4,114430 0,016488	4,000000 4,185200 0,000000
Luftdebit Kmol/h	A B	1536,4526 1596,9195	1543,8929 1599,5026	1590,3350 1620,5955	1617,8097 1631,8533
Ablaßfasdebit Kmol/h	A B	413,3963 137,9247	380,1886 126,8453	206,8828 69,0240	96,0124 32,0333
Ammoniakdebit Kmol/h	A B	2232,6968 2382,1814	2258,5490 2396,4604	2405,2021 2480,2477	2495,5342 2530,3621
Das steigen der Pro- duktivität in Ver- gleich zur Variante I A%	A B	6,7176	1,1578 7,3347	7,7263 11,0875	11,7721 13,3320
Das senken des Verl rauches von Natur-	о- А	-	1,1446	7,1721	10,5323
Produktion (I A) %	в	6,2947	6,8335	9,9808	11,7637

Die wichtigste Verbesserung wird beim Übergang von der Variante 1_A zur Variante 1_B festgestellt. Der einfache Anschluss einer Bearbeitungsanlage für Ablassgase, ohne weitere Änderungen erreicht eine Steigerung der Produktivität von 6,7176% oder eine Reduzierung des Energieverbrauchs von 6,2947% bei gleichbleibender Produktion [4-9]. Bei dieser Variante fordert die Rückführung des Wasserstoffes eine Steigerung des Luftverbrauchs von 30,4679 kmol/h. Dieser Luftüberschuss konnte eine zu grosse Temperatursteigerung im sekundären Reformer hervorrufen. Deshalb muss ein mathematisches Modell des Reaktors aufgestellt werden. das die neuen Arbeitsbedingungen studiert bevor diese Variante industriell angewendet wird.

Bei der Variante I-II sind Anderungen der techologischen Parameter notwendig, folglich auch höhere Investitionskosten. Die Ergebnisse aus Tafel 5 erlauben eine Auswertung der maximalen Leistungen. Aufgrund dieser Leistungen können die Einsparungen berechnet werden. Bei der Variante IV B welche die perfektionierteste ist steigt die Produltivität um 13,332% und der Gaskonsum bei konstanter Produktion fällt um 11,7637% im Vergleich zur Anlage I. Sind diese die maximalen Möglichkeiten? Es sind jedenfalls die Grenzen des vorgeschlagenen mathematischen Modells. Werden die Bilanzgleichungen mit den energetischen Bilanzleichungen komplettiert, können höchstwahrscheinlich neue innere Reserven dieser Anlagen enthüllt werden.

LITERATUR

1. I. Siminicescu, A. Pop, Stud. Univ. Babes-Bolyai, Chem. 33 (2), ... (1988).

I. Siminiceanu, A. Pop, Stud. Univ. Babes-Bolyai, Chem., 24 (2), 28 (1979).
 I. Siminiceanu, C. Calistru, A. Pop, Hung. J. Ind. Chem., 7, 279 (1979).

4. * * * "Fertilizer Manual", U.N.I.D.O., New-York, 1980 5. * * * Rev. Chim. (București), 36, 175 (1985). 4. *

.

6. * * * Rev. Chim. (București), 36, 371 (1985). 7. * * Rev. Chim. (București), 36, 465 (1985).

8. I. Siminiceanu, Rev. Chim. (Bucuresti), 39 (10), 1988 (sub tipar).

9. S. Wardas, Chemik, 39, 247 (1986).

CONTRIBUTIONS TO THE STUDY OF SOME HETEROCYCLES LXIV. Tautomerism of some ethyl α - [(3-Aryl-1, 2, 4-triazol-5-yl)-tio]acetoacetates

I. SIMITI*, V. ZAHARIA*, H. DEMIAN* and S. MAGER**

Received : August 4, 1988

The tautomerism (I \rightleftharpoons II) of some ethyl α -[(3-ary1-1,2,4,-triazol-5-yl)-tio]-acetoacetaes obtained from 3-phenyl-5-mercapto-1,2,4-triazole and α -bromo-acetoacetic ester was studied by means of the ¹H-NMR-spectroscopy. The keto-enolic equilibria of compound I and its acetylated derivative are solvent dependent: the percentage of the enolic tautomer decreases as the solvent changes from CDCl₃ to acetone-d₈ and dimethylsulfoxide-d₈. The mass-spectrum of compound I is also presented.

In a previous paper, the reaction between 3-aryl-5-mercapto-1, 2, 4-triazoles and α -bromo-acetoacetic ester was studied [1], arriving at the conclusion that α -[(3-aryl-1, 2, 4-triazol-5-yl)-tio]-acetoacetic esters were formed.

Besides the specific tautomerism of the triazolic ring, the obtained compounds show the keto-enolic tautomerism peculiar to the structure of the acetoacetic ester (1), as well as the ring-chain tautomerism (2) also observed by us in other cases [2]. The I a, b -type compounds are soluble in alkalinous medium, form chelates with Cu²⁺ ions, give peculiar colour reaction with the ferric chloride,

^{*} Institute of Medicine and Pharmacy Cluj-Napoca, Department of Organic Chemistry, 3400 Cluj-Napoca, Romania

^{**} University of Cluj-Napoca, Department of Organic Chemistry 3400 Cluj-Napoca, Romania

I. SIMITI et al.

but do not react with 2, 4-dinitrophenylhydrazine. Some facts are in agreement with the existence of the tautomeric equilibrium $I \rightleftharpoons II$ (1), in contrast with the case of the compounds obtained in the reaction of 3-phenyl-5-inercapto-1, 2, 4-triazole with bromoacetaldehide. In that case, by means of mass spectrometry, the presence of both compounds of type I and III was proved [2], in agreement with the existence of the ring-chain tautomerism $I \rightleftharpoons III$ (2) and with the localisation of the triazolic proton respectively.

Once the enolic form II of the equilibrium (1) is raised for discussion, it would be possible to take into account the existence of both Z and E configurational isomers, but only the E one presents the suited structure (II), being able to allow the formation of an intramolecular hydrogen bond. Because of the free rotation around the C-S-C bond, between the numerous possible conformations, the molecule adopts the one in which the unfavourable steric interactions are minimized. In any of A or B type conformations, belonging to the equilibrium (3), stabilisation by means of intramolecular hydrogen bonds is possible.

In order to elucidate the structural problem of the compounds of type I, mass spectrometry, ${}^{1}H-NMR$ and IR-spectroscopy techniques, respectively were used. The last one does not offer conclusive data. The mass spectrum whose partially fragmentation pattern is presented in Scheme 1 accounts for the ketonic form I.

The ¹H-NMR spectra, run in CDCl₃, show the presence of the broad, very deshielded signal ($\delta = 8.89$ ppm) of the enolic proton, belonging to the structure II. Because of the rapid protonic chemical exchange, the enolic proton and the NH proton of the triazolic ring (which in its turn, as a consequence of the typical tautomerism of the triazoles, may be attached to anyone of the three nitrogen atoms) may not be seen as distinct signals. The tautomeric equilibrium I \Rightarrow II is strongly solvent dependent. Its position can be estimated by means of the ¹H-NMR-spectra run in different solvents, taking into account the rather big differences in chemical shifts of the protons belonging to the methyl group connected to the carbon atom involved in the double bond of enol II, or to the carbonylic carbon, in the case of the ketonic tautomer I.

The NMR-spectrum run in CDCl₃ makes evident the enolic proton ($\delta = 8.98$ ppm) and in the same time allows the estimation of the concentration of the enolic form to about 80%, by means of the intensity of the methyl signal (Fig. 1). In the spectrum run in acetone-d₆ (containing water traces which favours the proton exchange between water and the hydroxylic proton as weel as the NH proton) the signal of the enolic proton may not be observed

(being included in the signal of the water present in acetone). From the intensity of the two methyl signals, it is possible to observe the modification of the ratio of the two tautomers (enol/ketone), from 80/20% to 60/40% (Fig. 2), as the solvent is changed from CDCl₃ to acetone-d₆. As the concentration of the ketonic isomer increases, the spectrum begins to differentiate the two ethyl groups having slightly different environments in the two tautomers. Indeed, the spectrum shows close quartets (Fig. 3) for the two ethyl groups an one formal quartet for the methyl groups, which originates in the partially superpositions of the corresponding two different triplets (Fig. 4) with slightly different environment in the two tautomers.

The influence of the more polar solvent, dimethylsulfoxyde-d₆, shows a stronger effect, arriving to a proportion of about 50% (Fig. 5) of the two tautomers. The existence of the two quartets, and two triplets is easy to observe in this case, too.

The chlorinated compound Ib shows a similar ¹H-NMR-spectrum. The chemical shifts in δ units for compounds IIa and IIb are shown în Table 1. The study of the tautomerism of compounds Ia, b was continued with their acetylation with acetic anhydride. The acetylated compounds react with 2, 4-dini-

trophenylhydrazine and in the same time give the colour reaction with the ferric chloride making evident the existence of the tautomeric equilibrium IV \rightleftharpoons V (4). The mass spectrum of the acetylderivative IV shows the presence of the molecular peak m/z 347 which, after the elimination of a ketene molecule, gives the M-42 peak (m/z 305) whose subsequent fragmentation is identical with that of compound I (Scheme 1).

The ¹H—NMR spectrum run in CDCl₃ shows the two signals for N-COCH₃ at $\delta = 2.76$ ppm and CH—COCH₃ at $\delta = 2.37$ ppm. The signal for the enolic hydroxyl can not be seen, proving the shifting of the equilibrium IV \approx V towards the ketonic structure IV. The existence of a single triplet and a single quartet for the ethyl group represents a confirmation of this conclusion. As in the case of the unacetylated compounds (I, II) the NMR spectra show the same dependence of the equilibrium upon the solvent. The spectrum run in deuterated acetone differs significatly from that obtained in chloroform : instead of the single signal belonging to the CH—COCH₃ group of IV (Fig. 6), two signals are present (Fig. 7), the second one belonging to the tautomeric form V with the -CH₃ group linked to the double bond of the enolic form. The intensity of the two signals is about the same (proportion of about 50% for the two isomers), their sum corresponding to the signal produced by three protons. The spectrum run in dimethylsulfoxyde-d₆ also shows two signals for the CH—COCH₃

group, with the same siginificance, but a different proportion.

The chlorinated acetyl derivatives behaves in the same manner showing the same solvent dependence.

The mass spectra were run with a Varian Mat 111 mass spectrometer at 80 eV $(49-90^{\circ})$ and the 'H-NMR spectra with a Tesla BS 487C 80 MHz spectrometer.

BIBLIOGRAPHY

- 59

^{1.} I. Simiti, V. Zaharia, M. Coman, H. Demian, S. Mager, F. Teodoru, C. Vladuş, Presented at the USSM Conference, Section Pharmacy, Cluj-Napoca, 22 Apr. 1968.

^{2.} I. Simiti, A. Märie, M. Coman, R. D. Pop, H. Demian, S. Mager, Arch. Pharm., 320, 528 (1987).

THE REACTION OF SOME 1-(2-PYRIMIDINYL)-PYRAZOLIN-5-ONES WITH HYDRAZINE HYDRATE

IOAN CRISTEA* and VALER FÄRCÄSAN*

Received : October 4, 1988

The 1-(2-pyrimidinyl)-pyrazolin-5-ones I, IV and VII were reacted with hydrazine hydrate. As result of a hydrazinolyse and a transhydrazonation IX and the corresponding hydrazines III, VI and VIII were obtained. In the same conditions by X no reaction and by XI only hidrazinolyse were observed.

In a previous work [1], with the aim to get compounds of potential pharmacological interest, we prepared some new substances by the nucleophilic substitution of the chlorine atom in 1-(4-chloro-5, 6-dimethyl-2-pyrimidinyl)-3-methyl--pyrazolin-5-one (I). In the attempt to render profitable this reaction we reacted I with another nucleophiles. This paper reports the rezults acquired if hydrazine hydrate was used.

In this way we intended to obtain the 1 (4-hydrazino-5, 6-dimethyl-2--pyrimidinyl)-3-methyl-pyrazolin-5-one (II), but under conditions described in the experimental section we isolated 2, 4-dihydrazino-5, 6-dimethyl-pyrimidine (III) as shown by analytical data. This proves that under the action of hydrazine hydrate the substitution of the halogen in I is associated with the cleavage of the pyrazolone ring. The corresponding monomethyl derivative IV behaves similarly affording not V but the dihydrazino-derivative VI.

We explored more careful the reaction between 1-(4-hydroxy-6-methyl-2--pyrimidinyl)-3-methyl-pyrazolin-5-one (VII) and hydrazine hydrate. In this case we isolated as reaction products the 2-hydrazino-4-hydroxy-6-methyl-pyrimidine (VIII) and the hydrazone of acetoacethydrazide (IX).

The structure of IX is supported by the elemental analysis and the molecular weight. The IR spectrum shows absorbtions in the regions assigned to the C = O, C = N and NH_2 groups. In the electronic spectrum, registered in DMFA, no bands were observed in the 260-350 nm range where the pyrimidine derivatives, as VII (λ_{max} 293 nm) or VIII (λ_{max} 294 nm), absorb. This compound was reported earlyer by Nayak and Mittra [2] with the m. p. 226°C and not 320°C as we found. In the above mentioned paper no experimental details are given on how the hydrazone of acetoacet hydrazide (IX) was obtained. Therefore we reacted 3-methyl-pyrazolin-5-one (X) with the hydrazine hydrate in the conditions prescribed by the authors [2] for the preparation from 1-phenyl--3-methyl-pyrazolin-5-one (XI) of the phenylhydrazone of acetoacet hydrazide (XII). Our attempts were unsuccesful, from the reaction mixture we isolated the unreacted X. It is worth to note that the hydrazinolyse of XI to XII, after Nayak and Mittra, was reproduced by us without problems.

^{*} University of Cluj-Napoca, Department of Organic Chemistry, 3400 Cluj-Napoca, Romania

61

.

The reaction between 1-(4-hydroxy-6-methyl-2-pyrimidinyl)-3-methyl-pyrazolin-5-one (VII) and hydrazine hydrate to give the 2-hydrazino-4-hydroxy-6-methyl-pyrimidine (VIII) and the hydrazone of acetoacethydrazide (IX) involves a hydrazinolyse — affording the 4-hydroxy-6-methyl-2-pyrimidinyl-hydrazone of acetoacethydrazide (XIII) — followed by a transhydrazonation. This sequence was suggested *e.g.* by the behaviour of 1-phenyl-3-methyl-pyrazolin-5-one (XI) which by hydrazinolyse afforded the phenylhydrazon of acetoacethydrazide (XIII).

Some of our attempts to isolate XIII failed. Even if VII and the hydrazine hydrate were reacted in equimolecular ratio VIII was formed.

As can be seen from the interaction of hydrazine hydrate with the pyrazolones VII, X and XI, under the same conditions, by the 1-unsubstituted-derivative (X) no reaction occurs while by the 1-substituted ones, VII and XI, the hydrazinolyse with ring opening was observed. Unlike 1-phenyl-substitutedderivative (XI), the 1-pyrimidinyl one (VII) undergoes also a subsequent transhydrazonation leading to IX.

Both hydrazinolyse and transhydrazonation involve the nucleophilic attack of the hydrazine in the 5-respectvely 3-position of the pyrazolone ring. Taking into account this fact the behaviour of the three pyrazolones, VII, XI and X, should be discussed having in view the differences in nucleophilicity of hydrazine and the parent hydrazines corresponding to the pyrazolones, namely 2-hydrazino-4-hydroxy-6-methyl-pyrimidine <phenylhydrazine</p>

A more detailed study on this topic will be the object of a next paper.

EXPERIMENTAL. The purity of the compounds was checked by TLC using "Silicagel RH" plates manufactured by the Institute of Chemistry Cluj-Napoca, chloroform-methanol 4 : 1 or benzene-glacial acetic acid 4.5 : 1 as eluent and iodine for identification. The m.p. were determined in capilaries and are uncorrected. For the recording of IR spectra a "Perkin-Elmer" spectrophotometer was used, the substances were prepared as KBr pellets. (Only some of the strongest bands were reported). The UV spectra in the 260–350 nm region were carried out in DMFA on a "SPECORD" spectrophotometer. The mass spectrum was measured on a LKB-9000 mass spectrometer. The ionising energy was 70 eV. The temperature of the inlet system keept between 50–100°C. The identity of the products obtained by us in the reactions with hydrazine hydrate, if they were prepared earlyer, was proved by superimposition of the IR spectra and the mixed melting points with authentic samples.

Reactions with hydrazine hydrate. Reaction of VII. A. To a solution of 1.8 g (0.0087 moles) VII in 25 ml methanol, 3 ml (0.06 moles) 100% hydrazine hydrate were added and the mixture refluxed for two hours After cooling the precipitate was filtered. Thus 1.1 g (90.2%) pure VIII were obtained. The filtrate was evaporated and the residue boiled with 20 ml water and hot filtered. The insoluble part was dissolved in 15 ml 20% hydrochloric acid and then by adding ammonia 0.7 g (61.2%) IX precipitate. IX can be recrystallized from DMFA-water. VIII m.p. 241°C [3]. C₈H₆N₄O (140.17). Calcd. N% 39.98. Found 39.6. IX is insoluble in water, ethanol, chloroform or benzene bat soluble in DMFA. M.p. 320°C. M.S. m/z 130 (M⁺). IR: 1/ λ 1000,1300, 1490, 1620, 1940, 2400-3600 (broad band) cm⁻¹. C₆H₁₀N₄ (130.18). Calcd N% 43.05. Found 43.0. B. To a boiling solution of 2 g (0.0097 moles) VII in 25 ml methanol 0.49 ml (0.0097 moles)

B. To a boiling solution of 2 g (0.0097 moles) VII in 25 ml methanol 0.49 ml (0.0097 moles) 100% hydrazine hydrate were added and refluxed for two hours. Then water was added, cooled and filtered. The precipitate, 0.6 g, was recrystallized from 30 ml 75% ethanol. Thus VIII, m.p. 241 $^{\circ}$ C [3] was obtained.

Reaction of I. To a solution of 2 g (0.0084 moles) I in 25 ml ethanol 4.5 ml (0.08989 moles) 100% hydrazine hydrate and 1 g anhydrous potassium carbonate were added and the mixture boiled for three hours. After cooling the precipitate was filtered and recrystallized from ethanol. Thus 1.2 g (85.1%) III were obtained M.p. 206 °C. IR : 1/λ 1018, 1180, 1400, 1520, 1610, 3300 cm⁻¹. C₆H₁₂N₆ (168.24). Caled. N% 49.96. Found 50.2.

Reaction of 1V. In the conditions described above for I from 2 g (0.0089) moles IV, 1.1 g (80.3%) VI were obtained. M.p. 216°C [3].

Reaction of XI. A. In the conditions reported by Nayak and Mittra [2], XII was obtained with the yield and the m.p. mentioned.

B. From XI in the conditions given for VII, XII was isolated. M.p. 219 °C. [2].

Reaction of X. A. From X in the conditions described for XI (method A) the starting product was recovered.

B. In the conditions given for XI (method B) from X the starting product was recovered.

REFERENCES

I. Cristea, V. Fărcășan, Rev. Chim. (București), 38, 680 (1987).
 A. Nayak, A. S. Mittra, J. Indian Chem. Soc. 55, 593 (1978).

3 H. Vanderbaeghe, M. Claesen, Bull. Soc. Chim. Belg., 68, 30 (1959).

STUDIA UNIV. BABES-BOLYAI, CHEMIA, XXXIV, 1, 1989

see. All and the added the first of the second states of the

the state of the state of the state of the ÜBER DIOXIMINKOMPLEXE DER ÜBERGANSMETALLE A. and the set of 11.121 LXXIV¹. Spectrophotometrische Untersuchung über die Komplexe des Rheniums mit aliphatischen a-Dioximen

and the second s

1 2

Bear St.

1 8 " Ba . .

And the second CSABA VARHELYI*, FERENC MAKKAY*, TEODORA CZIER* und GERGELY PERINT** PARATA

Eingegangen am 17 Oktober 1988

. ...

On the Dioximine Complexes of Transition Metals (LXXIV). Spectrophotometric Study on the Rhenium Complexes with Aliphatic a-Dioximes. The formation conditions, composition (Re(IV): oxime = 1:4), stability and analytical application of some rhenium (IV) complexes with aliphatic a-dioximes and keto-oximes: glyoxime, diamino-glyoxime, methyl-isopropyl-2,3-diondioxime, methyl-isopropyl-2,3-dione-monoxime (3) and with furyldioxime were studied spectrophotometrically in hydrochloric acid medium in the presence of tin(II)-chloride and other reduction agents.

Einleitung. In stark sauren Lösungen, in Anwesenheit von Reduktons-mitteln, findet eine Farbreaktion zwischen ReO_4^- und einiger α -substituierten Oximen statt. [1-3]. Außer dem Dimethylglyoxim [4], wurden auch einige aromatische (Benzyldioxim), heterocyclische (Pyridylglyoxim, Pnenylpyridylketoxim [5] und alycyclische Dioxime, (Nyoxim, 4-Methyl-nyoxim, Heptoxim [6-8]) für diese Reaktion verwendet.

Die Bestimmung der Zusammensetzung und des Oxidationsgrades des Rheniums in diesen wasserlöslichen dunkelgelben (bis rotbraunen) Verbindungen ist wegen der Kompliziertheit des untersuchten Systems (ReO_{4}^{-} – Oxim-Reduktionsmittel-Mineralsäure) schwierig.

Martin und Meloche [9] nehmen an, daß das Rhenium in diesen Verbindungen zweiwertig, und das Molarverhältnis Re: Oxim = 1:2 ist. Nach Fergusson und Mitarbeiter [10] kann die Formel: Re $(Dioxim)_3 X$ (X = einwertiges Anion) angenommen werden. Andere Verfasser [11, 12] sprechen von Re (IV) - oder Re (V) - Derivaten mit verschiedener Zusammensetzung. Als Reduktionsmittel wurde, im allgemeinen, SnCl_2 in salzsauer Lösung verwendet. Nach Babko und Michelson [13] nimmt das Sn als Bestandteil des Komplexes teil. Diese Annahme konnte jedoch durch ¹¹³Sn Isotopenaustauschreaktionen nicht unterstüzt werden [14]. Die spektrophotometrischen Messungen zeigten daß das Cl⁻ – Ion ein unentbehrlicher Bestandteil dieser Derivate ist. Ohne Salzsäure kann eine Verschiebung der Absorbtionsbanden im sichtbaren Bereiche nach höheren Wellenzahlen beobachtet werden. Aus den chromatographischen Untersuchungen von Lazarev und Mitarbeiter [15] mit starken Kantionenaustäuschern

¹ I.X.XIV. Mitt. Mánok, E. Köszegi, Cs. Váthelyi, A. Benkő, Stud. Univ. Babeş-Bolyai, Chem.im Druck ^o Universität Cluj-Napoca, Fakultät für Chemie, 3400 Cluj-Napoca, Rumänien ^o Universität Cluj-Napoca, Fakultät für Chemie, 3400 Cluj-Napoca, Rumänien ^o Chemisch. Pharmazeusisches Forsch. Inst. 3400 Cluj-Napoca, Rumänien

(R—SO₃K) geht hervor, daß die obenerwähnten Komplexe kationischen Charakter besitzen.

In vorliegender Arbeit wurden die Bildungsbedingungen, Beständigkeit und die analytische Anwendbarkeit einger Komplexe von diesem Typ mit aliphatischen Oximen im Vergleich mit denjenigen des Furyldioxims untersucht.

Resultate und Diskussion. Die elektronischen Spektren einer Reihe von $\text{ReO}_4^-\text{Oxim}$ - SnCl_2 - HCl Systemen wurden in wässriger Lösung aufgenommen. Zu diesem Zweck wurden folgende Oxime verwendet : Glyoxim, Diamino-glyoxim Diacetylmonoxim, Methyl-isopropyl-dion (2, 3)-monoxim (3), Methyl-isopropyl-diondioxim und Furyldioxim. Die Elektronenspektren der farbigen Komplexe sind in Abb. 1. und 2. wiedergegeben.

Wir haben beobachtet, daß die gelbbraune bis rote Färbung nur nach 10-15 Minuten auftritt. Sie erreicht ihre maximale Intensität nach 40-50 Minuten. Die Intensität der Farbe verringert sich nach 24 Stuuden nicht. Die langsame Entwicklung der Farbe kann durch die stufenweise Reduktion des ReO_4^- zu Re^{4+} erklärt werden.

$$2 \operatorname{ReO}_{4}^{-} + 3 \operatorname{Sn}^{2+} + 12 \operatorname{H}^{+} = 2 \operatorname{ReO}^{2+} + 3 \operatorname{Sn}^{4+} + 6 \operatorname{H}_{2}O$$

Wie aus Abb. 3. hervorgeht, ist die optimale Salzsäurekonzentration dieser Reaktion 0.5-0.1 Mol.

Bei höheren Salzsäurekonzentrationen nimmt die optische Dichte der Probelösungen ab.

Die Spektraldaten der Komplexe sind in der Tabelle 1 zusammengestellt.

Die Rhenium-komplexe haben zwei Absorptionsbanden im sichtbaren Bereiche des Spektrums, um 18,5–22 kK, bzw. bei 28–30 kK. Der molare Extinktionskoeffizient (ε) der Komplexe liegt zwischen 500–40,000 im Falle der Bande A, bzw. zwischen 800–3000 im Falle der Bande B. (das Furyldioxim-Re (IV) System absorbiert stark im Bereiche 27–30,000 cm⁻¹ ohne daß eine wohdefinierte Bande in diesem Spektralgebiete vorhanden wäre.

A b b.
 1. Elektronenspektren von: 1.
 Re(IV)-Glyoxim; 2. Re(IV)-Diaminoglyoxim; 3. Re(IV)-Diacetylmonoxim.

A b b. 3. Einfluß der Salzsäurekonzentration auf die optische Dichte der Re(IV)-Oxim-Lösungen. I. Oxim: Methy-isoporpyl-2,3-diondioxim nach 1/2 Stunde; II. Idem nach 24 Stunden; III. Oxim: Furyldioxim nach 1/2 Stunde; IV. nach 24 Stunden.

Oxim	Bande A kK	٤A	Bande B kK	E B
Glyoxim	22,8	1 1 50	30	900
Diaminoglyoxim	21	500	28	800
Diacetylmonoxim	22	1 000	29	1300
Methyl-isopropyl-2,3-dion- monoxim (3)	22	1 100	29,5	1500
Methyl-isopropyl-2,3-dion- dioxim	22	12 400	30	3900
Furyldioxim	18,8	40 000		

Spektroskopische Daten über die Renium (IV)-Oxim-Komplexe

Wie aus Tabelle l ersichtlich ist, haben die Glyoxim- und Diamino-glyoximinkomplexe nur schwache Absorption im sichtbarem Bereich und deshalb haben nur wenige analytische Bedeutung. Das Methyl-isopropyldioxim und das Furyldioxim mit hohen ε -Werten sind empfindliche Reagenzien für die spektrophotometrische Bestimmung des oberwähnten Metalls.

Einfluß des Reduktionsmittels. Außder der $SnCl_2$ – Lösung haben wir verschiedene Reduktionsmittel für die Entwicklung der Farbe ausprobiert. In Anwesenheit von Schwefeldioxid, Hypophosphit, Chorhydrat des Hydroxylamins und Hydrazins tritt keine Farbreaktion in ReO_4 – Oxim – Mischungen auf.

Bei Verwendung einiger Metallsalze in salzsauer Lösung, in niedrigeren Oxydationsstufen, wie $CrCl_2$, $TiCl_3$, $V(II)Cl_2$ entstehen farbige Re-Oxim- Komplexe. Die Intensität der Farben ist aber schwächer als im Falle der $SnCl_2$ – Lösung.

Spektrophotometrische Bestimmung des Rheniums mit Oximen.

Zur analytischen Bestimmung des Rheniums als Dioximinkomplexe ist wichtig die Gültigkeit des Lambert- Beer-schen Gesetzes in einem bestimmten Konzentrationsbereich zu prüfen.

In Abb. 4. und 5. sind die Eichkurven der Rhenium-komplexe bei einem Molarverhältnis: ReO_{4}^{-} : Oxim = 1 : 5, in 1 Mol HCl, in Anwesenheit von SnCl_{2} dargestellt.

Wie ersichtlich, folgen die untersuchten Lösungen das Beerschen Gesetz in einem Konzentrationsbereich von $10^{-5} - 10^{-4}$ Mol/l (ReO₄). (im Falle des Furyldioxims: $5 \cdot 10^{-6} - 5.10^{-3}$).

Das Glyoxim und Diamino-glyoxim sind zu diesem Zweck weniger geeignet. .Die höchste Empfindlichkeit kann durch Verwendung des Furyldioxims erreicht werden. Bei höheren ReO⁻ – Konzentrationen treten positive Abweichungen von den Eichkurven auf. DIOXIMINKOMPLEXE DER UBERGANGSMETALLE LXXIV

A b b. 4. Eichkurven für Rheniumbestimmung; 1. mit Furyklioxim; 2. mit Methyisopropy1-2,3-dion-monoxim (3).

A b b. 5. Eichkurven für Rheniumbestimmung? 3. mit Glyoxim; 4. mit Methy-isopropyl-2,3dion-dioxim.

Zur Bestimmung des mittleren Fehlers der spektrophotometrischen Methode wurden je 10 Bestimmungen mit je 5.10^{-5} Mol/l ReO₄ durchgeführt. Genaui-gkeit

mit	Methyl-isopropyl-dion	(2, 3)	monoxim	(3)		.±0,30%
mit	Methyl-isopropyl-dion	dioxim	(2,3) .		•	.±0,20%
mit	Furyldioxim		• • • •		•	.±0,20%

Von den Begleitselementen Kupfer und Palladium stören diese analytische Methode in annähernd 100-1000 fachen Mengen. Ihre Komplexe haben eine Absorption im Bereiche von 26-33 kK.

Über die Zusammensetzung der Oximin-komplexe des Rheniums.

Zur Bestimmung der Zusammensetzung der obenerwähten Komplexe wurde die Job'sche Methode verwendet.

A b b. 6. Job'sche Kurven : 1. Re(IV) – Glyoxim ; 2. Re(IV) – Diaminoglyoxim.

Die isomolaren Kurven der ReO_{4}^{-} -Oxim Mischungen in 0,6 m HCl in Anwesenheit von überschüssiger SnCl_2 -Lösung sind in Abb. 6–8 wiedergegeben. (mit viollettem Filter aufgenommen).

Diese Kurven Zeigen einige Abweichungen von den klassischen Job'schen Kurven, bei denen aus farblosen Komponenten stark gefärbte Verbindungen entstehen. Bei höheren $\text{ReO}_4^-/\text{Oxim}$ Verhältnissen entstehen erhebliche Mengen der gelbgrünen $[\text{ReCl}_6]^{2-}$ – Ionen. Mit der Verminderung dieser Verhälthisse nimmt die optische Dichte der Lösungen ab und es erscheinen keine Maxima mehr bei Re: Oxim ==1:1, bzw. 1:2 Verhältnissen. In allen unter-

suchten Fällen erscheint ein gut ausgeprägtes Maximum bei 1:4. Im Gegensatz zu den klassischen Chelaten der α -Keto-oxime und α -Dioxime, bei denen, in den meisten Fällen ein Molarverhältnis Metall: Oxim = 1:2 beobachtet werden kann, entstehen in unseren Experimentierbedingungen nur klassische Komplexe mit Re: Oxim = 1:4. In stark saurem Medium befinden sich die obenerwähnten Komplexbildner in neutraler (z.B. R-C(=NOH)-C(=NOH)-R) oder in monoprotinierter Form (R-C(=NOH)-C-NOH.H⁺-R) als einzähnige Liganden, ohne chelatbildende Eigenschaften.

Im Falle des Furyldioxim $-\text{ReO}_4^--\text{SnCl}_2$ Systems konnten wir, wegen der starken Eigenabsorption des organischen Reagenzes keine Maxima an der Joh'schen Kurve nachweisen.

Experimenteller Teil. 0,01 M KReO₄ – Lösung. 10 mMol feingepulvertes Rhenium werden in 50 ml 6%-iger H₂O₂ – Lösung erwärmt. Das Rhenium löst sich unter Sauerstoffentwickelung langsam auf. Dann wird die Lösung mit KOH neutralisiert und mit Wasser auf 1000 ml aufgefüllt. Saure $SnCl_2 - Lösung$. 10 g SnCl₂ · 2H₂O werden in 50 ml konz. Salzsäure unter Erwärmen auf gelöst, dann mit Wasser auf 100 ml Volumen aufgefüllt.

0,01 *M Oxim – Lösungen*. 10 mMol Komplexbildner werden in 1000 ml wässriger Lösung (Furyldioxim in Aceton-Wasser Mischung 1:3) verwendet.

Die optischen Messungen wurden mit einem Specord Spektrophotometer (Carl Zeiss Jena), bzw. mit einem FEK Kolorimeter (UdSSR) durchgeführt. Elektronenspektren: ReO_4 : Oxim = -1:5, ReO_4 : $2 \cdot 10^{-5} - 6 \cdot 10^{-5}$ Mol/l, 2 ml 1 %-ige SnCl₂ – Lösung, 5 ml 2 M HCl + Wasser in einem 25 ml Meßkolben.

Die izomolare Lösungen wurden mit Hilfe von 5 · 10^{-s} Mol KReO₃ und 5 · 10^{-s} Mol Oxim + + 2 ml SnCl_a – Lösung und Salzsäure in 25 ml Meßkolben untersucht.

LITERATUR

- 1. M. B. Tougarinoff, Bull. soc. chim. belges, 43, 111 (1934).
- 2. S. Tribalat, Compt. rend., 222, 1388 (1946); 224, 469 (1947).
- 3. S. Tribalat, Ann. Chim. (France), 4, 259 (1949).
- 4. A. J. Lazarev, V. J. Lazareva, S. Sh. Zak, T. M. Ustenko, Zavodskaya Lab., 28, 1316 (1962).
- 5. F. Trusell, R. J. Thompson, Analyt. Chem., 36, 1870 (1964).

- 6. V. M. Peshkova, I. G. Ignatyeva, Zhur. analit. Khim., 19, 1269 (1964).
- 7. V. M. Peskhova, M. J. Gromova, Vestnik Moskovskogo Univ. Ser. Mat.-Fiz.-Khim., 10, 85 (1952).

- 10, 85 (1952).
 8. R. J. Thompson, R. H. Gore, F. Trusell, Analyt. Chim. Acta., 31, 590 (1964).
 9. V. M. Meloche, R. L. Martin, W. H. Webb, Analyt. Chem., 29, 527 (1957).
 10. J. E. Fergusson, J. H. Gainsford, Inorg. Chem., 3, 290 (1964).
 11. B. T. Kenna, Analyt. Chem., 33, 1130 (1960).
 12. T. M. Cotton, A. A. Wolf., Analyt. Chem., 36, 248 (1964).
 13. A. K. Babko, P. B. Michelson, V. T. Vasilenko, A. G. Kononenko, Ukrin Zhu, 200 (1964). Ukrain. khim. Zhur., 30, 309 (1964).
- 14. V. M. Peshkova, N. G. Ignatyeva, Zhur. analit. Khim., 22, 757 (1967). 15. A. J. Lazarev, Zhur. obshchei Khim., 25, 2198 (1955).

BEITRÄGE ZUR CHEMIE DER TETRACYANO-SÄURE DES PLATINS (II)

CSABA VÁRHELYI* und ION GĂNESCU**

Eingegangen am 25 Oktober 1988

Contributions to the Chemistry of the Tetracyano-Acid of Platinum (II). A number of 10 new ammonium salts of the type (amine \cdot H)₂[Pt(CN)₄] and 13 new cobalt(III)amine derivatives of H₂[Pt(CN)₄] dibazic acid were obtained by double decomposition reactions. Some metal- and ammonium-salts were characterized by IR spectra.

Einleitung. Außer den homogenen Tetra- und Hexacyano-Komplexen, wie z.B. $[M(CN)_4]^{2-}$ (M = Ni, Pd, Cu), und $[M(CN)_6]^{3-}$ (M = Fe, Cr, Co, Rh, Ir) vurden auch eine Reihe von gemischten Cyano-Komplexen des Eisens ($[Fe(CN)_5 NO]^{2-}$ und insbesonders des Kobalts (III) (z.B. $[Co(CN)_5NO]^{2-}$, $[Co(CN) (H_2O)]^{2-}$ $[Co(CN)_4(H_2O)_2]^-$, $[Co(CN)_5X]^{3-}$; X = Cl, Br, I) beschrieben [1, 2]. Es wurde auch die Kinetik der Hydrolyse dieser Verbindungen untersucht [3, 4]. Das Cyanid-Ion mit sehr erheblichen nukleophilen Eigenschaften kann Halogene-, Amine, NH₃, H₂O und verschiedene organische Liganden in verschiedenen Derivaten der Übergangsmetalle austauschen. Diese Substitutionsreaktion findet auch im Falle der meisten Platin (II) und (IV)-Komplexen glatt statt. Der Prozess ist often von Redoxprozessen (Pt(IV) \rightarrow Pt(II) begleitet [5, 6].

Ciugaev [7] hatte erwähnt, daß der obenerwähnte Ligand auch die sehr stark gebundenen Dimethylglyoximreste im $Pt(DH)_2$ -Chelat leicht ersetzen kann.

$$Pt(DH)_2 + 4 KCN = K_2[Pt(CN)_4] + 2 DH.K$$

Die freie zweibasische Tetracyano-Säure als auch ihre Alkali – und Erdalkali-Salze wurden beschrieben.

Terrey [7] hatte auch Halogeno-cyano-Platinate, wie $[Pt(CN)_4Cl_2]^{2-}$, $[Pt(CN)_4Br_2]^{2-}$ und $[Pt(CN)_4I_2]^{2-}$ durch eine Additionsreaktion der $[Pt(CN)_4]^{2-}$ mit freien Halogenen erhalten. Die basische Hydrolyse dieser gemischten Komplexe wurde spektrophotometrisch, vom kinetischen Standpunkt aus untersucht [8].

Ergebnisse und Diskussionen. Die chemische Eigenschaften der $H_2[Pt(CN)_4]$ -Säure wurden nur sehr wenig untersucht.

Wir haben beobachtet, daß die Alkalisalze dieser Säure mit den Chlorhydraten der heterocyclischen N-Basen, und insbesondere mit denjenigen der Alkaloide (Strychnin, Brucin, Chinin, Chinidin, Codein, usw) schöne, gelbe, schwerlösliche kristalline Fällungen geben. Diese Derivate können auch zur analytischen Bestimmung der entsprechenden N-Basen, wenn man von dem

[•] Universität von Cluj-Napoca, Fakultät für Chemische Technlogie, 3400 Cluj-Napoca, Rumänien

^{••} Universität Craiova, Fakultät der Naturwiss., 1100 Craiova, Numänien
hohen Preis des Platins absehen kann, verwendet werden. Eine Reihe von neuen Ammoniumsalze sind in der Tabelle 1 charakterisiert.

:1 Mol. Analyse No. Formel Charakteristik Gew. ber. Ber. Gef. 459.2 1. (Pyridin.H).A dunkelgelbe, kurze C 36.61 36.60 Prismen \mathbf{H} 2,63 2,59 Ν 18.29 18.22 2. $(\gamma - Picolin.H)_{2}A$ 487.3 dunkelgelbe Nadeln C 39.43 39.40 Ħ 3,30 3,26 N 17.23 17.20 3. (2.6-Lutidin.H)_aA 515.4 dunkelgelbe rhomb. C 41.94 41.90 H Plättchen 3.91 3,80 N 16.29 16,06 4 (sym. Collidin.H),A 543,5 dunkelgelbe unregelmäs-C 44.19 44.06 н 4,40 sige Platten 4.45 N 15.10 15.45 481,4 5. (0-Phenanthrolin.H.).A gelbe microkrist. Masse N 17.45 16.90 457.3 gelbe microkrist. Masse N 6. (Dipyridyl.H.)A 18.37 18,20 7. (8-Oxy-chinolein.H)₂A 589.5 С goldgelbe Platten 44,82 44,76 H 2.73 2,60 N 14.25 14,10 C 8. (Benzimidazol.H),A 537.4 quadratische gelbe 40.22 40.00 Prismen Ħ 2,62 2,50 N 20,84 20,70 9. C (Benzthiazol.H).A 577.5 dunkelgelbe, unregelmä-37.82 37.70 2,06 ssige Krist Ħ 2,11 N 14.69 14,40 10. 601.5 gelbbraune unregelmas-(2-Amino-benzthiazol.H).A C 35,94 35,88 sige Krist. H 3,01 2.89 $A = [Pt(CN),]^{n-1}$

Neue Ammoniumsalze des Typs (Amin. H)₂ [Pt(CN)₄]

Es ist bemerkenswert, daß die aliphatischen und aromatischen Aminen unter analogen Bedingungen nur leicht lösliche Salze bilden können. Im Vergleich zu den $(Amin. H)_2$ [Pt(SCN)₆]-Salzen sind die Löslichkeitsverhältnisse der (Amin. H)₂ [Pt(CN)₄] vom analytischem Standpunkt aus, schlechter.

4

Unsere doppelte Umsetzungsreaktionen mit verschiedenen Kobalt- (III)und Chrom (III)-amin-Basen zeigen, daß das $[Pt(CN)_4]^2$ mit Monoacido-pentamin- und Diacido-tetramin- Basen schöne, charakteristische kristalline Fällungen geben. Die Hexamine, wie $[M(NH_3)_6]^3$, $[M(en)_3]^3$, $[M(Dip)_3]^3$, $[M(NH_3)_5$ (H_2O)]³⁺, usw, sind für diesem Zweck ungeeignet.

 [M(NH₃)₅ (H₂O)]³⁺, usw, sind für diesem Zweck ungeeignet. Die schwerlöslichen Salze von Typ Kation₂ [Pt(CN)₄] können zur gravimetrischen Bestimmung des Platins in [Pt(CN)₄]²⁻-Lösungen verwendet werden.
 Von den Komplexbasen haben die bis- Dioximin-- Derivate der Tetracyanoplatinite die kleinste Löslichkeit. Die erhaltenen neuen Komplexsalze sind in den Tabellen 2 und 3 charakterisiert.

Tabelle 1

	Ti - e m e l	Mol.			Analyse		
NO.	Former	Gew. ber.	. Charakteristik	Ber.		Gef.	
11.	$\operatorname{cis-[Co(en)_2Cl-(\gamma-Picolin)]} \cdot A$	606,7	rotbraune, kleine unregel- mäss Krist.	Pt Co	32,15 9,71	31,90 9,60	
12.	cis-(Co(en) _{\$} Cl-(Benzylamin)]·A	620,6	gelbbraune microkryst. Masse	N Pt Co	20,76 31,43 9,49	20,50 31,30 9,25	
13.	cis-[Co(en) ₂ Cl-(Anilin)] · A	606,6	gelbbraune, kleine unre- gelmäss. Krist.	N Co N	20,30 9,71 20,76	20,10 9,50 20,40	

Nene Komplexsaize des Typs els- [Co(en), X(Amin)] [Pt(CN),]

Andere Monoacido-pentamine: $[Co(NH_3)_5(NO_2)]A$ (gelbe Nadeln), $[CO(NH_3)_5(NCS)]A$ (gelbbraune unregelmäss. Krist) nicht analysiert.

Tabelle 3

Neue Komplexsaze des Typs [Co(Diox. H)₂ (Amin)₂]₂ [Pt(CN)₄]

NT -		Mol. Charakteristik Gew. ber.		Analyse		
NO.	rormer			Ber.		Gef.
14.	$[C_0(DH)_{\bullet}(NH_2)_{\bullet}]_{\bullet} \cdot A$	945,5	gelbbraune Nadeln	Pt	20,63	20,55
		-	0	Co	12,46	12,20
				N	23,69	23,50
15.	[Co(DH), (p-Toluidin),], A	1305,9	gelbbraune quadratische	Pt	14,93	14,80
			Prismen	Co	9,02	8,88
				N	17,15	17,00
16.	[Co(DH) ₉ (Pyridin) ₂] ₂ · A	1193,5	gelbbraune unregelmäs-	Co	9,87	9,76
			Kryst.	N	18,76	18,61
17.	$[Co(DH)_{2}(Anilin)_{2}]_{2} \cdot A$	1249,5	gelbbraune Dendryte	\mathbf{Pt}	15,61	15,50
			<u> </u>	Co	9,43	9,33
				N	17,92	17,70
18.	$[Co(DH)_2(\alpha-Naphtylamin)_2]_2$ ·	1450	braune Würfeln	Pt	13,45	13,30
	• A			Co	8,12	8,00
				N	15,44	15,20
19.	[Co(Niox.H) ₂ (Anilin) ₂] ₂ · A	1353,8	braune, hexagonale	Pt	14,41	14,24
			Platten	Co	8,70	8,60
				N	16,54	16,30
20.	[Co(Heptox.H), (Anilin),], A	1409,8	braune, hexagonale	Pt	13,83	13,70
			Plättchen	Co	8,36	8,20
				N	15,88	15,70
21.	[Co(Heptox.H)2(p-Anisi-	1529,8	gelbraune quadratische	Pt	12,75	12,60
	$din)_{2}$ A		Plätten	Co	7,70	7,61
				N	14,64	14,53
22.	[Co(Heptox.H)2(Pyridin)2].A	1353,8	gelbraune hexagonale	Pt	14,41	14,30
			Platten	Co	8,70	8,65
				N	16,54	16,40
23.	$[Co(Heptox.H), (NH_3),]_3 \cdot A$	1105,7	dunkelgelbe Nadeln	Pt	17,64	17,55
			5	Co	10,66	10,53
				N	20,25	20,19

Tabelle 2

Die Analysedaten bestätigen daß in allen untersuchten Fällen nur normale Salze der zweibasicher H₂(Pt(CN)₄]- Säure entstehen.

In den IR Spektren einiger Ammonium-, Metall- und Metall (III)- amin-Salzen erscheint eine sehr starke, scharfe Bande um 2135-2150 cm⁻¹, die der "C = N - Valenzschwingungsfrequenz der Komplexgebundenen CN- Gruppe zuzuordnen ist. Diese Frequenzen erscheinen bei den freien, nicht koordinierten CN-Liganden, wie z.B. im Falle des KCN, bei 2080 cm⁻¹. Die Verschiebung der Valenzschwingungsfrequenzen der CN-Gruppe nach höheren Werten bei der Komplexbildung ist mit Hilfe der Resonanztheorie erklärbar.

Den freien und den koordinierten CN⁻-Ionen werden folgende Resonanzstrukturen zugeschrieben:

freies
$$CN^-$$
 -Ion : $\overline{C} = N : \leftrightarrow :C = N :^-$
(a) (b) ...
koordiniertes CN^- -Ion : $M - C = N : \leftrightarrow M^+ = C = N :^-$
(c) (d) ...

Die (b)-Struktur ist für das freie CN⁻ -Ion wahrscheinlich, und die (d)-Struktur für die in Platin (II)-Komplexen gebundenen CN^{-} -Ionen. [9-11]. Die Lage der V=N -Schwingungsfrequenzen im Bereiche 2050-2150 cm⁻¹ wird von der Natur des Metallatoms, von seinem Oxydationsgrad und von der Koordinationszahl des Komplexes bestimmt. Wie aus den Daten der Tabelle 4 hervorgeht, nimmt die Stärke der M-C – Bindung in der Reihe Fe < < Cr < Co, Pt zu.

Die 'M- C - Schwingungsfrequenzen sind im Bereiche 460-600 cm⁻¹ erkennbar. Die 'Pt-C -Bande erscheint bei 500-510 cm⁻¹.

Die ⁸M-C=N und ⁸C-M-C Deformationsschwingungsfrequenzen erscheinen in fernem IR- Bereiche : 250-330 cm⁻¹, bzw. annähernd um 100 cm⁻¹ und deshalb konnten wir diese nicht aufnehmen [12-13].

i einiger Gyan	o-wombleven
vC=N	۷M−C (cm ⁻¹)
2080 ss	
2125 ss	505 s
2135 s	462 s
2142 ss	564 s
2150 ss	505 s
2140 ss	505 s
2135 ss	510 s
2145 ss	500 s
	℃=N 2080 ss 2125 ss 2135 s 2142 ss 2150 ss 2140 ss 2135 ss 2145 ss

Sneltted Data elulas Cuona Vampleven

Tabelle 4

Experimenteller Tell. K₂[Pt(CN)₄] · 3H₂O · 20 mMol K₂[PtCl₆] in 200 ml Wasser werden mit 50 mMol KCN behandelt. Die braune

Suspension löst sich auf dem Wasserbade allmählich auf und eine farblose Lösung entsteht. Nach Eindampfen kristallisieren farblose Prismen aus. Die $Hg[Pt(CN)_4]$ und $Ba[Pt(CN)_4] + 4 H_2O$ Salze wurden aus der wässerigen Lösung des Kaliumsalzes mit überschüssiger $H_{\mathbf{g}}^{i}(\mathbf{NO}_{a})_{a}$, bzw. BaCl2-Lösiung erhalten. Ammoniumsalze: (Amin.H)2[Pt(CN)4] · 10 mMol Amin werden mit 10-15 ml 10 %-iger Salzsäurelösung erwärmt, dann abgekühlt und mit 0,5 mMol, K2[Pt(CN)4] in 10-15 ml Wasser behandelt. Nach 15-20 Minuten Stehenlassen wird die gebildete kristalline Masse abfiltriert, mit wenig eisgekühltem Wasser gewaschen und an der Luft getrocknet.

Kobalt (III) - am in - Salze der $H_2([Pt(CN)_4]$ -Säure. Diese Verbindungen wurden aus je 10-15 mMol Kobalt (III)-amin-Salz in 50-100 ml Wasser (oder verd. Methanol 1:1) und je 0,5 mMol K₂Pt(CN)₄] in 10-15 ml Wasser durch doppelte Umsetzung erhalten.

Die ausgeschiedene kristalline Masse wurde wie oben verarbeitet.

Die Synthesenmethoden für die Kobalt(III)-amin-Basen wurden in unseren früheren Arbeiten beschrieben.

Die IR-Spektren einiger Tetracyanato-platinite wurden in KBr-Presslingen mit : einem Spektrophotometer UR 20 Carl Zeiss Jena (DDR) aufgenommen. and there are a second

LITERATUR

- 1. P. Ray, N. K. Dutt., Z. anorg. Chem., 234, 65 (1937).

- R. Ray, T. Guptachaudkuri, Z. anorg. Chem., 220, 154 (1934).
 R. Grassi, A. Haim, W. K. Wilmarth, Inorg. Chem., 6, 237 (1967).
 P. Tewari, R. W. Gaver, H. K. Wilcox, W. K. Wilmarth, Inorg. Chem., 6, 611 (1967).
- 5. J. Haidlen, R. Fresenius, Liebigs Ann. Chem., 43, 136 (1842).
- 6. R. J. Friswell, A. J. Greenaway, J. Chem. Soc. 32, 252 (1877).
 7. A. Ciugaev, Z. anorg. Chem., 46, 152 (1905).
 8. H. Terrey, J. Chem. Soc., 1928, 204.

.

- 9. E. F. Herrington, W. Kynaston, J. Chem. Soc., 1955, 3555.
 10. W. P. Griffith, G. Wilkinson, J. Chem. Soc., 1959, 2757.
 11. M. F. El-Sayed, R. K. Sheline, J. inorg. nuclear Chem., 6, 187 (1958).
 12. C. V. Pistorius, Z. physik. Chem. 23, 197 (1960).
 13. D. M. Sweeny, I. Nakagawa, S. Mizushima, J. V. Quagliano, J. Amer. Chem. Soc., 78, 889 (1956). 1.

THE OPTIMIZATION OF SOME ECHIPARTITIVE ELUENT SYSTEMS FOR THE STUDY OF HISTOLOGICAL DYES BY THIN LAVER CHROMATOGRAPHY

SIMION GOCAN* and ILEANA ANECHITEI*

Received: 4 November, 1988

The results of the chromatographic behaviour of 4 echipartitive eluent systems based on the Hildebrand solubility coefficients are shown. These systems were used for the separation of a large number of histological dyes. Precoated Silica Gel 60 Merck plates with concentrating zone were used. The four echipartitive eluent systems were: pyridine/35% ammonia/isobutanol (1:1:3, v/v); dioxane/35% ammonia/isobutanol (1:1:3, v/v); dioxane/(35% ammonia/isobutanol (1:1:3, v/v). Experimental results confirm the similar behaviour of these eluent systems.

Introduction. The stationary phase which is most often used for the separation of histological dyes by thin layer chromatography is the silica gel. The mobile phase is chosen according to the nature of the dyes. Thus, chloroform/ benzene $(1:1, v/v \ [1])$ or chloroform/methanol $(4:1, v/v) \ [2]$ has been used. Horodin and Murgatroyd [3] also use besides chloroform/methanol (4:1, v/v) other eluent systems for the separation of histological dyes. Eluent systems with an acid character have also been used, such as n-propanol/formic acid $(4:1, v/v) \ [4]$; n-butanol/acetic acid/water $(4:1:5, v/v) \ [3]$, $(78:5:17, v/v) \ [5]$ and $(2:1:5, v/v) \ [6]$; chloroform/methanol/formic acid $(15:10:1, v/v) \ [7]$ and also with a basic character such as n-propanol/ammonia/water $(8:1:1, v/v) \ [6, 8]$ and n-propanol/n-butanol/amonia/water $(4:4:4:1, v/v) \ [9]$ or $(4:4:1:1, v/v) \ [6, 8]$.

In order to separate histological dyes cellulose is used sometimes besides the silica gel as a stationary phase for the thin layer chromatography, and n-butanol/water/acetic acid (3:3:1, v/v) or (4:4:1, v/v)]10] are used as eluents.

Mixed thin layer formed from silica gel/celullose were also used with n-buthyl acetate/n-butanol/acetic acid/water (4:1:2:1, v/v) or (7:3:5:3, v/v) [11] as an eluent.

The present work deals with finding a quantifying parameter for the equivalence of some eluent systems for the liquid-liquid repartition chromatography.

[•] University of Cluj-Napoca, Faculty of Chemical Technology, Analytical Chemistry Department, 31)) Cluj-Napoca

S. GOCAN, J. ANECHITEI

It seems that the most suitable one is the solubility parameter δ defined by Hildebrand and Scott [12] for unpolar systems as:

$$\delta_i = \left(\Delta E_i^v V_i\right)^{1/2} \tag{1}$$

where E_i^v is the energy of vaporation per mole of pure *i* and V_i is the molar volume. Then Blanks and Prausnitz [13] extended these considerations to polar systems (but not to the hydrogen bonding), and Hansen [14] took into consideration both polar and hydrogen bonding interactions.

The solubility parameter δ can be expressed as a product of specific solubility parameters [15, 16]:

$$\delta^2 = \delta_d^2 + 2\delta_{in}\delta_d + \delta_0^2 + 2\delta_a\delta_b \tag{2}$$

where: δ is the total solubility parameter from vaporization energy; δ_d — dispersion solubility parameter; δ_0 — orientation solubility parameter; δ_{in} — induction solubility parameter; δ_a — proton donor solubility parameter and δ_b — proton acceptor solubility parameter. The values of the specific solubility are given in Table 1 for a number of solvents [17].

Table 1

The Hildebrand solubility parameters [17] for some solvents

Solvent	8*	δ_d	δ,	δ _a	86	δ _{in}
Pyridine	10.6	9.0	3.8	_	4.9	1.0
Dioxane	10.1	7,8	5.2	-	4.6	1.0
Quinoline	10.8	10.3	1.8	_	4.2	0.3
Nitrobenzene	11.1	9.5	3.6	_	1.0	1.1
Toluene	8.9	8.9		_	0.6	
Benzene	9.2	9.2			0.6	
Tetrahydrofurane	9.1	7.6	3.5		3.7	0.8

* solubility parameters (calculated from the boiling point (cal/ml)^{1/8}).

We have come to the conclusion that, in order to point out the equivalence between two solvents or eluents from the point of view of the chromatographic behaviour towards the separation of some components, it is better to use the P parameter instead of δ . The P parameter represents the sum of the differences in absolute value of all the interactions which characterize the two solvents:

$$P = |\delta_{d}^{i} - \delta_{d}^{j}| + |\delta_{o}^{i} - \delta_{o}^{i}| + |\delta_{in}^{i} - \delta_{in}^{j}| + |\delta_{b}^{i} - \delta_{b}^{j}| = = \Delta \delta_{d} + \Delta \delta_{o} + \Delta \delta_{in} + \Delta \delta_{b}$$
(3)

i is the reference eluent and j represents other eluents which we want to compare to the reference eluent.

The values obtained from the data given in Table 1 are given in Table 2. The data in Table 2 poin out the fact that the closest solvent to pyridine (consi-

Table 2

Eluent System	$\Delta \delta_d$	$\Delta \delta_0$	$\Delta \delta_{in}$	$\Delta \delta_b$	P
Pyridine/35% ammonia/isobutanol (1 : 1 : 3, v/v)	0.0	0.0	0.0	0.0	0.0
Dioxane/35% ammonia/isobutanol (1:1:3, v/v)	1.2	1.4	0.0	0.3	2.9
Quinoline/35% ammonia/isobutanol (1:1:3, v/v)	1.3	2.0	0.7	0,7	4.7
Nitrobenzene/35% ammonia/isobutano (1:1:3, v/v)	0.5	0.2	0.1	3.9	4.7

The eluent isopartitive systems used

dered a reference solvent in this case) is the dioxane P = 2.9, followed by quinoline and nitrobenzene P = 4.7. If we take into consideration the values of δ then the closest solvent to pyridine is the quinoline followed by dioxane and nitrobenzene (Table 1). There are also cases when the solubility parameter δ for two solvents has very close values (for example: tetrahydrofurane $\delta =$ = 9.1 and for benzene $\delta = 9.2$ so $\Delta \delta = 0.1$). But if we calculate the value of P by the relation (3) for benzene and tetrahydrofurane we obtain the value 8.0. If we the pair of solvent toluene and benzene we see that $\Delta \delta = 0.3$ and for P = 0.3. So, in this case, according to the value of the parameter, the chromatographic behaviour of tetrahydrofurane should be closer to the benzene than that of toluene but this has not been proved experimentally. Still we are of the opinion that the parameter P describes better the resemblances and the diferences between the two solvents. The eluent systems based on this principle have been verified experimentally in the present study.

Experimental. Precoated Silica Gel 60 Merck plates with concentrating zone and 0.25 mm thick layers were used.

The eluent systems which were used are those in Table 2. The histological dyes used are listed in Table 3. The Plates were developed ascendingly in N-saturated chambers. The atmosphere was saturated with the vapours of the mobile phase by lining the walls of the chromatographic chamber with chromatographic paper so as to have one end in the eluent.

Samples of 3 μ l/spot 0.1% metanolic solution of dye were applied.

The development was made at 76 °C using the following eluent system: nitrobenzene/ammonia//isobutanol (1:1:3, v/v).

Results and conclusions. This study has dealt with the chromatographic behaviour of a large number of histological dyes. The hR values are given in Table 3. Table 3 shows that a small number of dyes have a unitary composition.

S. GOCAN, J. ANECHITEL

Table 3

dR_f Values of some histological dyes

Precoated Silica Gel 60 Merck plates with concentrating zone Eluents: S_1 – Pyridine/35% ammonia/isobutanol (1:1:3, v/v); S_2 – Dioxane/35% ammonia/isobutanol (1:1:3, v/v); S_3 – Quinoline/35% ammonia/isobutanol (1:1:3, v/v); S_4 – Nitrobenzene/35% ammonia/isobutanol (1:1:3, v/v)

	hRf					
Dye —	S ₁	S ₂	S ₃	S ₄		
Orange G (CI 16230)	16	2	8	12		
Methyl Orange (CI 13025)	35 83*	18 88*	31 93*	50 87*		
Metanil Yellow (CI 13065)	35 83*	20 88*	32 93*	45 51 87*		
Sudan III (CI 26100)	81 85*	86 89*	93	88		
Sudan IV (CI 26106)	12 26* 34 48* 73* 83*	0* 18 87*	7 18* 31 94*	10 55 88*		
Sudan Black B (CI 26150)	83	86	93	88		
Erythrosine (CI 45430)	0 8* 19* 25* 27* 34 47* 79*	0* 3* 6 11 53* 65*	0 4* 15* 23 28* 89*	0* 10* 21* 26* 35 89*		
Floresceine (CI 45350)	0* 13 17* 21* 25* 31* 60* 80*	0 13* 15* 17* 46* 83*	0* 6 8* 12* 15* 19* 67* 92*	0* 9 13* 17* 24* 73*		
Brilliant Chresyl Blue (CI 51010)	0* 92	0* 83	0 51* 94	0* 54 80		
Toluidine Blue (CI 63340)	64 70* 91*	39 81*	74 95*	66		
Janus Green B (CI 11050)	0* 29* 52 66* 75* 87*	0 23 33* 55* 80*	12* 15* 45 67* 83*	25* 48 51 63*		
Aniline Blue (CI 50405)	22* 30* 52* 78* 91* 93	15* 80* 85	35* 94* 95	16* 47* 53 73* 82		
Gentian Violet (CI 42555)	65 76*	0* 70* 77	0* 50* 91	60* 83		
Crystal Violet (CI 42555)	0 78	0* 70* 77	0* 50* 91	60* 83		
Ponceau S (CI 15635)	13 20* 38 48* 81*	0* 17 26* 85*	7 11* 34	11 18* 59* 88*		
Alizarine (CI 58000)	2* 24 78*	0* 4 79*	3* 18	54		
Methyl Blue (CI 42780)	0* 1 7* 10* 14* 19* 27* 35*	0	0 7* 9* 16*	0 2* 12* 14* 16*		
Eosin W Yellow	15* 22* 26 30 36* 39 45 83*	16 19 22* 48 76*	11* 14 17* 21* 31* 37* 47* 92*	18* 25 33 48* 56 91*		
Methyl Eosine Blue	23* 28 33 54 64 79*	3 5 10 36 57* 81*	17 19* 23 31* 67 90*	19* 26 38 61 71* 88*		
Nil Blue	91	23* 75* 80	93	0* 54 80		
Acridine Red	32* 44* 71 91*	38* 44 80* 83*	18* 27* 35 72 94*	78* 69 49		
Muxicarmin	0 93*	0	0 94*	0		
Orceine	0* 54* 58 64* 79* 84	0* 21* 23 28* 65	0* 33* 37 43* 78 82	0* 45 59* 70 77*		
Congo Red	17* 21* 27 32* 93*	0* 1 86*	7* 9* 12	33 35*		
Phenol Red	17* 27* 32* 37* 40 45* 49 82*	1* 14 23 25* 88*	6* 21* 25 37	16* 33* 41 47 52* 57*		
Pyplau Blue	0* 3 6* 13* 16* 20* 22*	0 1* 88*	0 2* 5* 8	0 10* 14		

· trances of dye

On the other hand, the behaviour of the four eluent systems is similar. This confirms the teoretical considerations as to the similitude of some eluent systems. The precoated Silica Gel 60 Merck plates with concentrating zone in combination with these eluent systems are higly efficient in the study of histological dyes.

REFERENCES

- A. G. Lansink, Histochemie, 16, 68 (1968).
 R. W. Horodin, L. B. Murgatroyd, Stain technol., 44, 297 (1969).
 R. W. Horodin, L. B. Murgatroyd, Histochemie, 11, 141 (1967).
 A. Stier, W. Specht, Naturwiss., 50, 549 (1963).
 J. H. Tyrer, M. I. Eadie, W. D. Hooper, J. Chromatogr., 39, 312 (1969).
 H. L. Dobres, W. A. Moats, Stain Technol., 43, 27 (1968).
 J. Purczycki, A. Szwarc, M. Owoc, Chem. Analyt. (Warsaw), 10, 485 (1965).
 A. D. Cramer, E. R. Rogerş, J. W. Parker, R. J. Lukes, Amer. J. Clin. Better 169 (1972) Pathol., 60, 148 (1973).
- 9. S. Logar, J. Perkavec, Mikrochim. Ichnoanal. Acta, 1964, 712.
- 10. R. W. Horodin, D. J. Goldstein, Histochem. J., 4, 391 (1972).
- S. Balogh, J. Tamás, J. Hegedüs-Vajda, Magy. Kém. Foly., 81, 227 (1975).
 J. H. Hildebrand, R. L. Scott, "The Solubility of Nonelectrolytes, Dover Publications", New York, 3 rd ed., 1964.
- 13. R. F. Blanks, J. M. Prausnitz, Ind. Eng. Chem. Fundam., 3, 1 (1964).
- 14. C. Hansen, Ind. Eng. Chem. Prod. Res. Develop., 8, 2 (1969). 15. R. A. Keller, B. L. Karger, R. L. Snyder, in R. Stock, (Editor), "Gas Chromatography", Institute of Petroleum, London, 1971.
- K. L. Hoy, J. Paint. Technol., 42, 76 (1970).
 B. L. Karger, L. R. Snyder, C. Hon, J. Chromatogr. 125, 71 (1976).

THE REACTION BETWEEN CHROMATE AND THIOLS IV. The effect of Fe(II)-Fe(III) and Cu (I)-Cu(II) Systems on the Oxidation of Thioglycolic Acid

IOAN BÂLDEA*

Received: 7 November, 1988

11

Kinetic studies have been carried out on the oxidation of thioglycolic acid by chromate in the presence of either Fe(II)-Fe(III) or Cu(I)-Cu(II) redox couples, and increasing effects on the rate has been found. The system Fe(II)-Fe(III) affects the rate via an induction mechanism, Cr(V) formed by one-equivalent reduction of Cr(VI) by Fe(II) oxidizes thioglycolic acid to dithiodiglycolic acid faster than chromate itself. An apparent second-order rate constant of 65 $M^{-1} \cdot s^{-1}$ has been obtained for the process

 $HOOCCH_2SCtO_2^{3-} + HCOOCCH_2SH \rightarrow Cr(III) + HOOCCH_2S - SCH_2COOH$

at 25 °C, ionic strength of 0.2 and constant acidity of 0.01 M. The presence of Cu(I)-Cu(II) couple brings about an enhancement of the rate via a catalytic cycle: Cu(II) ions oxidize organic substrate trapped as ligand in some transient complex, and Cu(I) ions are reoxidized by $HCrO_4^-$. Part of Cu(I) ions produced in the reduction yields complex with excess of thioglycolic acid and is removed from the further catalytical action. The order of magnitude of catalytic rate constant is of $10^7 M^{-2} \cdot s^{-1}$, determined at very low copper ion concentration.

Introduction. The transition metal ions, having variable oxidation states, often catalyze redox reactions taking place with nonequivalent redox systems [1-4]. The oxidation of thioglycolic acid to dithiodiglycolic acid by persulphate ion yields reproducible results in the presence of Fe²⁺ or Fe³⁺ ions. The catalyst cycle appears to be that ferrous ion is oxidized by persulphate to ferric ion, and this is reduced back to ferrous ion by thioglycolic acid [1]. Sometimes, ions of variable oxidation states act as inductors, enhancing the rate of some oxidations by chromate [5-7]. A previous study showed these effects on the chromate-thiosulphate system [7]. The oxidation of thioglycolic acid by chromate has been investigated and a two-equivalent rate determining step has been considered to yield dithiodiglycolic acid and Cr(IV) [8].

To help in further understanding of electron transfer involving Cr(V) and Cr(IV) species in the oxidation of thiocompounds by chromate, the oxidation of thioglycolic acid by chromate has been investigated in the presence of either Fe^{3+}/Fe^{2+} or Cu^{2+}/Cu^+ oxidation-reduction couples in acid solutions.

Experimental. Chemicals were either of analytical grade purity and used without further purification, or prepared in the laboratory. $Fe(ClO_4)_3$ and $Cu(ClO_4)_2$ were obtained from nitrate salts by precipitation with sodium carbonate and sodium hydroxide, respectively, and precipitates were washed in twice distilled water and dissolved in HClO₄ solution. Hydrated $Fe(ClO_4)_3$ was crystallised and recrystallised; $Cu(ClO_4)_2$ was obtained only as solution having some HClO₄ in

^{*} University of Cluj-Napoca, Department of Chemistry, 3400 Cluj-Napoca, Romania

excess. Standardization was made iodometrically and free acidity was determined after passing 2 ml aliquots down a column of Amberlite IR-120(H) cation-exchange resin. The hydrogen-ion concentration of the eluent solution was determined by titration with 0.1 M NaOH.

The extent of the reaction was followed spectrophotometrically at 387 nm, which is an isosbestic point for HCrO⁻ and HOOCCH₈SCrO₈⁻ ions, the latter being a condensed compound between thioglycolic acid and chromate [8]. The experimental procedure was described previously in greater detail [8, 9]. The same kinetic results were obtained irrespective of the fact that the solutions of both the oxidizing species (HCrO₄⁻ and Fe³⁺ or HCrO₄⁻ and Cu³⁺) were injected into the solution of thioglycolic acid to start the reaction, or if the solutions of Fe(III) or Cu(II), respectively, were added to excess of thioglycolic acid, and chromate solution was injected into it. In the last situation, both ferric and cupric ions were reduced to ferrous and cuprous ions by thioglycolic acid prior the chromate oxidation.

A large excess of thioglicolic acid was used to ensure first-order conditions. The acidity of 10^{-2} M and ionic strenght (μ) of 0.2 were kept constant by adding required quantities of HClO₄ and LiClO₄ solutions.

Results and discussion. The effect of Fe(II) – Fe(III) redox couple. The rate of disappearance of the coloured species (HCrO₄ and HOOCCH₂SCrO₃) was studied under pseudo-first-order conditions. The first-order plots were linear to more than 90%completion. In the presence of iron (II) or iron (III) ions, an enhancement of first-order rate constants has been obtained as the total iron perchlorate was increased. Table 1 presents kinetic data at various concentrations of total iron ions, for two concentrations of thioglycolic acid. Each k_{obs} value in the table is a mean of 3-5individual runs, which do not differ to more than 5%. The abbreviation RSH is used for HOOCCH, SH. Second-order rate constants k_{so} were computed as $k_{obs}/(RSH)$; direct reaction between chromate and thioglycolic acid follows a first-order dependence on both $RSCrO_3^-$ and RSH under constant hydrogen-ion concentration [8]. Under the conditions of 10-20 fold excess of organic substrate, all amount of Cr (VI) is in the form of condensed compound RSCrO3. A non-linear dependence of second-order rate constants on total iron ions concentration was found, as illustrated in Fig. 1. However, the second-order rate constanst for the two concentrations of RSH used are lying on the same curve. It is unlikely that the reaction of thioglycolic acid with chromate in the presence of Fe(II)—Fe(III) redox couple proceeds by a catalytical cycle in which Fe(II) produced by or-ganic substrate is reoxidized to Fe(III) by chromate. If this occurs, the dependence of k_{so} on total iron ion concentration should by linear. There is as yet no evidence for the existence of some Observed first-oder rate constants for the oxidation of thiogiyeolis acid by chromate in the presence of Fe(II)-Fe(III) at 25°C, $\mu = 0.2$, $(H^+) = 1 \times 10^{-2}$ and HCrO₄⁻) = $= 4 \times 10^{-4}$

10 ⁵ (Fe) _i	$k_{obs} (s^{-1})$ at (RSH) = 4×10^{-3}	8 × 10 - 3
0.0	0.0663	0.138
0.275	0.075	0.177
0.55	0.0812	0.173
1.10	0.0983	0.194
2.00	0.115	0.249
2.75	0.139	0.281
4.13		0.322
5.00	0,160	0.330
5.50	0.162	0.336
7.50	0.168	0.352

Fig. 1. Dependence of secondorder rate constant $k_{s0} = k_{obs}$ /(RSH) on the total iron ions concentration

6 - Chimia nr. 1/1989

Table 1

Fe(II) — thioglycolic acid complex to protect Fe(II) for further oxidation. To explain the curvature in Fig. 1 as the total iron ion is increased, all the steps which could be involved should be considered. Taking into account the separate mechanisms for thioglycolic acid—chromate [8—11], thioglycolic acid—Fe(III) [1, 12] and Fe(II)—chromate [13] systems, the following sequence of steps is belived to take place:

$RSH + HCrO_4^- \rightleftharpoons RSCrO_3^- + H_2O$	K_{f}	(1)
$\mathrm{Fe^{3+} + HCrO_{4}^{-}} \rightleftharpoons \mathrm{FeCrO_{4}^{+} + H^{+}}$	K 36	(2)*
$Fe^{3+} + RSH \rightleftharpoons FeSR^{2+} + H^+$	K_1	(3)
$FeSR^{2+} + RSH \rightleftharpoons Fe(SR_2^+) + H^+$	K_2	(4)
$\mathrm{Fe^{2+} + HCrO_{4}^{-}} \rightleftharpoons \mathrm{Fe^{3+} + HCrO_{4}^{2+}}$	K_{3}	(5)
$\mathrm{HCrO_4^{2-}} + \mathrm{RSH} \rightleftharpoons \mathrm{RSCrO_3^{2-}} + \mathrm{H_2O}$	K'_f	(6)
$RSCrO_3^- + RSH \rightarrow Cr(IV) + RSSR$	k ₁	(7)
$RSCrO_3^- + RSH + H^+ \rightarrow Cr(IV) + RSSR$	k2	(8)
$\mathrm{Fe^{2+} + HCrO_4^{2-} \rightarrow Fe^{3+} + Cr(IV)}$	k_3	(9)
$Fe(SR)_2^+ + FeSR^{2+} \xrightarrow{H^+} 2 Fe^{2+} + RSH + RSSR$	k4	(10)-
$RSCrO_3^{2-} + Cr(III) + RSSR$	k ₅	(11)-
$\mathrm{Fe^{2+}} + \mathrm{Cr(IV)} \rightarrow \mathrm{Fe^{3+}} + \mathrm{Cr(III)}$	k _e	(12)>
$RSH + Cr(IV) \rightarrow RS + Cr(III)$	k,	(13)
$2 \text{ RS} \rightarrow \text{RSSR}$	k,	(14)

RSH stands for thioglycolic acid and RSSR for dithiodiglycolic acid. There are six complex forming and redox equilibria and eight one-or two-equivalent electron-transfer steps, involving Cr(VI), Cr(V), Cr(IV), free radicals and Fe(II)-Fe(III) species. Previous studies [8–14] showed that equilibria (1)–(5) are rapidly estabilished. Under the excess of RSH, the processes (1), (3) and (4) are shifted to the right. The concentration of FeCrO₄⁺ is extremely low ($K_{36} = 1.4$ [13]) in the range of concentrations used in this study. The standard potential of Cr(VI)/Cr(V) couple – estimated at 0.62 V [5, 6, 13] – is comparable to that of Fe(III)/Fe(II) couple of 0.77 V, and $K_3 \simeq 2.8 \times 10^{-3}$. Therefore, equilibrium (5) is shifted to the left. Equilibrium (6), in which HCrO₄²⁻ combines with a thiol molecule to form a Cr(V)–S bonding, has been assumed by analogy with equilibrium (1) and the general tendency of all acids of H_nMO₄.

The redox steps (9) and (10) are characterized by specific velocities higher than that of (7), (8) and (11). The last three steps (12)-(14) proceed very fast. The oxidation of Fe(II) by Cr(V) is considered fast, although step (9) is rate determining process in the oxidation of Fe(II) by Cr (VI) [13]. But under the large excess of RSH, Cr(V) formed in (5) reacts through the sequence (6) and (11); it oxidizes the organic substrate via a two-equivalent step forming. RSSR and Cr(III). Such a way to increase the oxidation rate of thioglycolic acid by acid chromate is an inductive mechanism. To obtain the rate law from the above sequence of steps, $HCrO_4^-$ was chosen as reference species. Material balance for chromium may be written as:

$$(Cr)_{t} = (Cr^{3+}) + (FeCrO_{4}^{+}) + (RSCrO_{3}^{-}) + (RSCrO_{3}^{2-}) + (HCrO_{4}^{-})$$
(15)

Expressing the concentrations of different species as a function of $(HCrO_{4}^{-})$ and neglecting the equilibrium (2), equation (15) becomes

$$(Cr)_{t} - (Cr^{3+}) = (HCrO_{4}^{-}) \left\{ 1 + K_{f}(RSH) + K_{f}^{1}K_{3}(RSH) \frac{(Fe^{3+})}{(Fe^{3+})} \right\}$$
(16)

The rate of decay of coloured species — which was in fact monitored — is rate = $\{k_1 + k_2(H^+)\} K_f(HCrO_4^-) (RSH)^2 + k_3(Fe^{2+}) (HCrO_4^-) + k_5K_f'(HCrO_4^-) \times$

$$\times (\text{RSH}) \frac{(\text{Fe}^{s+})}{(\text{Fe}^{s+})}$$
(17)

Taking into account the small concentration of iron species and $HCrO_4^{2-}$, the assumption that the second term has a minor contribution to the sum is reasonable and could be neglected. Expressing $(HCrO_4^{-})$ from (16) as a function of total Cr(VI) concentration, the observed first-order rate constant takes the form

$$k_{\rm obs} = \frac{k_{so}^o K_f (\rm RSH)^s + k_s K_s K_f a (\rm Fe)_t (\rm RSH)^s}{1 + K_f (\rm RSH) + K_s K_f a (\rm Fe)_t (\rm RSH)}$$
(18)

where $k_{so}^0 = k_1 + k_2(\mathrm{H}^+)$ at constant acid concentration, and the ratio (Fe²⁺)/(Fe³⁺) has been considered to be linear dependent on the total iron concentration. This means that a steady state concentration of Fe(III) is reached. When a large excess of RSH is used, $K_t(\mathrm{RSH}) + K_3K_t^*a$ (Fe)_t (RSH) ≥ 1 , and

$$\frac{k_{\rm obs}}{(\rm RSH)} = k_{\rm so} = \frac{k_{\rm so}^0 + k_{\rm s} K_{\rm s} (K_f/K_f) a \, ({\rm Fe})_t}{1 + K_{\rm s} (K_f/K_f) a \, ({\rm Fe})_t}$$
(19)

The equation (19) describes the curvature in Fig. 1 as the concentration of total iron species is increased. In the first approximation the increment of second-order rate constant is

$$\frac{k_{\rm obs}}{(\rm RSH)} - k_{\rm so}^0 = \Delta k_{\rm so} = k_5 \frac{K_3(K_f'/K_f)a \, (\rm Fe)_t}{1 + K_3(K_f'/K_f)a \, (\rm Fe)_t}$$
(20)

and the linear form

$$\frac{1}{\Delta k_{\rm BO}} = \frac{1}{k_{\rm b}} + \frac{1}{k_{\rm b} K_{\rm a}(K_{\rm f}'/K_{\rm f})a} \cdot \frac{1}{({\rm Fe})_{\rm t}}$$
(21)

gives k_5 from the intercept and $K_3(K'_f/K_f)$ a from the slope. Further, using the determined value for $K_3(K'_f/K_f)$ a, and computing new and corrected values for Δk_{so}

$$\Delta k_{\rm so} = \frac{k_{\rm obs}}{(\rm RSH)} - \frac{k_{\rm so}^0}{1 + K_{\rm s}(K_f/K_f) \cdot a \cdot (\rm Fe)_f}$$
(22)

Fig. 2. Dependence of the inverse of increments of secondorder rate constants on the inverse of total iron ion concentration.

better values for k_5 and $K_3(K_f/K_f)$ a were obtained. Several interations were performed. Linear dependence of $1/\Delta k_{so}$ as a function of 1/(Fe), is illustrated in Fig. 2, and the seventh approximation data — when convergence has been attained — are given in Table 2.

From the intercept a value of $k_5 = 64.6 \text{ M}^{-1}\text{s}^{-1}$ was obtained at constant acid concentration, and from the slope $K_3(K_f/K_f)$ $a = 1.76 \times 10^4$. The correlation coefficient was 0.997. Table 3 contains computed values for the second-order rate constants, relying on these parameters as compared to the experimental values, showing a satisfactory agreement, and proving an inductive mechanism for the oxidation of thioglycolic acid by cromate in the presence of Fe³⁺/Fe²⁺ couple. The induction factor could not be obtain because reducing agent was always used in excess to obtain only dithiodiglycolic acid as oxidation product.

Hypochromic acid, formed via Fe^{2+} reduction of Cr (VI), oxidizes thioglycolic acid at a faster rate (k_5 is about 4 time greater than k_{50}^0 — measured in the absence of iron ionic species).

Table 2

10 ⁵ (Fe)	$1 + K_{e} \frac{K_{f}}{dr} \cdot a(\text{Fe})_{e}$	$\Delta k_{so} M^{-1}$	-1 · s ⁻¹	10-5	$1/\Delta$	kso
()	K _f	$(RSH) = 4 \times 10^{-3}; 8 \times 10^{-3}$		$(\mathbf{Fe})_t$	$4 \times 10^{-3} 8 \times 10^{-8}$	
0.0	1.0	-		-	-	-
0.275	1.045	2.88	3.13	3.67	0.347	0.319
0.55	1.091	5.10	5.82	5.82	0.196	0.172
1.10	1,182	10.55	9.66	0.91	0.0948	0.104
2.00	1.330	16.26	18.16	0.50	0.0614	0.0551
2.75	1.454	23.35	23.27	0.367	0.0428	0.0430
4.13	1.681		30.12	0.242	·	0.0332
5.00	1.825	30.92	32.30	0.200	0.0323	0.0310
5.50	1.908	31.81	32.96	0.182	0.0313	0.0303
7.50	2.238	34.59	36.29	0.130	0.0289	0.0276

Data for the linear dependence given by equation (21) and calculated values for Δk_{so} from equation (22)

The effect of Cu(II)-Cu(I) redox couple. The system $Cu^{2+}-Cu^{+}$ has a measurable increasing effect on the rate of thioglycolic acid oxidation by chromate at concentration level one order of magnitude smaller than that of $Fe^{3+}-Fe^{2+}$ system. The rate constants determined for two series of runs at two excess concentrations of organic substrate are presented in Table 4. Pseudofirst-order rate constants in the second and third columns of Table 4 are mean

Table 3

10 ⁵ ×	k_{so} at (RSH	$) = 4 \times 10^{-8}$	k_{so} at (RSH)	$= 8 \times 10^{-1}$
(Fe) _t	expt1	calcd	expt1	calcd
0.0	16.58		17.25	<u> </u>
0.275	18.75	18.79	19.63	19.44
0.55	20.30	20.81	21.63	21.42
1.10	24.58	24.36	24.25	24.92
2.00	28.58	29.17	31.13	29.58
2.75	34.75	32.23	35.13	32.70
4.13			40.38	37.20
5.00	40.00	39.04	41.75	39.40
5.50	40.50	40.18	42.00	40.52
7,50	42.00	43.88	44.00	44.17

Comparison of the experimental and calculated second-order rate constants

Table 4

Observed first-order and calculated second-order rate constants for the oxidation of thioglycolic acid by chromate in the presence of Cu(I)-Cu(II) at 25°C, $\mu = 0.2$, (H⁺) = 1 × 10⁻² and (HCrO₄⁻) = 4 × 10⁻⁴

106 × (Cm)	k_{obs} (s ⁻¹) at	(RSH) =	$k_{\rm so} = k_{\rm obs}/({\rm RSH})$	(M ⁻⁸ s ⁻³) at (RSH)=
$10^{\circ} \times (Cu)_{i}$	4×10^{-3}	8×10^{-3}	4×10^{-a}	8×10^{-s}
0.0	0.0663	0.138	16.58	17.25
0.25	0.0815	0.210	20.28	26.25
0.50	0.0927	0.235	23.18	29.38
0.75	_	0.258	_	32.25
1.00	0,116	0.289	29.00	36.13
2.00	0.139	0.311	34.75	38.88
4.00	0.184	0.346	46.00	43.25
7.00	0.227	0.360	56.75	45.00
10.00	0.232	0.388	58.00	48.60
12.00	0.248	0.398	62.00	49.75
15.00	0.257	0.400	64.25	50.00
	···			

values of 3-5 individual kinetic runs. Second-order rate constants were calculated as mentioned above, and plotted against total copper ion concentration, as it is shown in Fig. 3. There appears some difference as compared to the above discussed system. Second-order rate constants depend on both total copper ion concentration and thioglycolic acid concentration; the points do not lie on the same curve. This result was checked somewhat in a great detail, maintaining total copper ion concentration at 1×10^{-5} and varying thioglycolic acid concentration. The results are summarized in Table 5, showing an approximate linear dependence of k_{so} on inverse thioglycolic acid concentration. On the other hand, if hydrogen-ion concentration was made 5×10^{-3} M, the rate of oxidation has decreased, but when was made 2×10^{-2} M, again a

decreasing effect was noticed. The influence of hydrogen-ion concentration has not been examined in this work.

To account for the mentioned behaviour, one should take into consideration the steps involved the individual Cu(II)-RSH, Cu(I)-Cr(VI) and RSH-Cr(VI) as well as inter-connections between them. These processes are as follows:

$HCrO_4^- + RSH \rightleftharpoons RSCrO_3^- + H_2O K_f$	(1)
$Cu^{2+} + RSH \rightleftharpoons CuSR^+ + H^+ \qquad K_4$	(23)
$CuSR^+ + RSH \rightleftharpoons Cu(SR)_2 + H^+ K_5$	(24)
$Cu^+ + RSH \Rightarrow CuSR + H^+ K_6$	(25)
$CuSR + RSH \Rightarrow Cu(SR)_2^- + H^+ K_7$	(26)
$RSCrO_3^- + RSH \xrightarrow{H^+} Cr(IV) + RSSR k_{so}^0$	(27)
$Cu^+ + HCrO_4^- \rightarrow Cu^{2+} + Cr(V)$ k_8	(28)
$CuSR + HCrO_4^- \rightarrow 2CuSR^+ + Cr(V) k_9$	(29)
$Cu(SR)_2^-+CuSR^+\rightarrow 2Cu^++RS^-+RSSR k_{10}$	fast (30)
H+ A (TT) + DOOD I H	(01)

$$\operatorname{Cr}(V) + 2\operatorname{RSH} \xrightarrow{\operatorname{III}} \operatorname{Cr}(\operatorname{III}) + \operatorname{RSSR} k_{\mathfrak{s}}K'_{\mathfrak{f}}$$
 (31)

Table 5

The effect of HOOCCH₁ SH concentration upon the rate at constant (Cu)_t = 1 × 10⁻⁵ , (H⁺) = 1 × 10⁻³, μ = 0.2 and 25°C

$10^{\circ} \times (RSH)$	kobs	kobs	RBO	k _{so}	Δk_{so}
	(s-	-1)	(M-1	s ⁻¹)	
3.33	0.054	0.212	16.52	63.66	47.14
4.00	0.067	0.232	16.70	58.00	41.50
6.66	0.115	0.332	17.24	49.85	32.61
8.00	0.138	0.388	17.25	48.60	31.55
10.00	0.172	0.407	17.20	40.70	23.50

The fast steps (13) and (14) involving Cr(IV) and free radicals were omitted. Mechanisms of Cu(II) oxidation of different substrates involve the initial formation of copper complexes [4, 14–16], and the products of reactions are determined by the experimental conditions; under the excess of reducing agent, Cu(I) — complexes are formed [4, 14, 17, 18], in the ratios 1: 1 and 1:2 copper(I) — ligand. According to these findings, equilibria (23)–(26) have been supposed to be present in the reacting system. The process (30) was considered to be similar to that of Fe^{3+} [12]. Different from reaction (5), the process Cu(I)—Cr(VI) in equation (28) could not be considered at equilibrium state. The standard reduction potential of Cu^{2+}/Cu^+ couple is about 0.17 V, far bellow the value for Cr(VI)/Cr(V) couple. This fact on the one hand, and the fast rate of oxidation of ligand by Cu(II) on the other hand, can rule out an induction mechanism, to explain the enhancement of rate of chromate oxidation of thioglycolic acid by Cu(II) - Cu(I) system. Therefore, a catalytic cycle is considered, with Cu(II) and Cr(V) concentration reaching a steady state under a large excess of thioglycolic acid. At the same time, the relatively stable complex $Cu(SR)_2$, possible chelate, does not undergo the further oxidation by Cr(VI). This has the effect of removing a part of copper ions from the catalytic cycle, and could explain the curvature on the plots of secondorder rate constants when copper ion concentration is increased at constant RSH concentration, or when RSH concentration is increased at constant copper ion concetration. . . .

If one expresses the rate of colour decay at 387 nm, the following relation is obtained :

rate' =
$$k_{0s}^{0}K_{f}(\text{HCrO}_{4}^{-})$$
 (RSH)² + $k_{g}(\text{Cu}^{+})$ (HCrO₄^{-}) + $k_{g}K_{g}(\text{Cu}^{+})$ (HCrO₄^{-}) ×
(RSH)/(H)⁺ + $k_{\dot{g}}K_{f}(\text{HCrO}_{4}^{2-})$ (RSH)² (32)

From the material balance for chromium species and copper species respectively, and taking into account the steady state concentration for Cu(II) and Cr(V). the experimental second-order rate constant may be written as:

$$k_{\rm go} = \frac{k_{\rm o\,b}}{(\rm RSH)} = \frac{k_{\rm go}^0 K_f(\rm RSH)}{1 + K_f(\rm RSH)} +$$
(33)

$$+\left[\left(\mathrm{Cu}\right)_{t}-\left(\mathrm{Cu}^{+}\right)K_{6}K_{7}\frac{(\mathrm{RSH})^{\mathrm{s}}}{(\mathrm{H}^{+})^{\mathrm{s}}}\right]\times\frac{2k_{\mathrm{s}}+2k_{\mathrm{s}}K_{6}\frac{(\mathrm{RSH})}{(\mathrm{H}^{+})}}{\left\{1+K_{f}(\mathrm{RSH})\right\}\left\{(\mathrm{RSH})+K_{6}\frac{(\mathrm{RSH})}{(\mathrm{H}^{+})}\right\}}$$

where the expression in square brackets represents the remainder Cu(I) available for further catalysis. Equation (33) can be re-writtem in a simple form under a large excess of RSH at constant acidity:

$$k_{\rm so} = k_{\rm so}^0 + (\rm Cu)_r \frac{2k_{\rm e} + 2k_{\rm g}K_{\rm e}(\rm RSH)}{K_f(\rm RSH)^2 + K_fK_{\rm e}(\rm RSH)^3}$$
[(34)

where $(Cu)_r$ stands for the available Cu(I). It explains qualitatively the dependence of catalytic effect on both (Cu)t and (RSH), but the specific velocities could hardly be obtained from the available data. The slope of the first part of curves - considered as linear - gives the order of magnitude for catalytic rate constant of 107M-2s-1. Further investigations on the effect of hydrogenion concentration on the rate in the presence of copper ions will bring new data to obtain catalytic rate constant for this process.

REFERENCES:

- J. F. Henderson, G. A. Winkler, Canad. J. Chem., 37, 1082 (1959).
 C. Walling, A. Goosen, J. Amer. Chem. Soc., 95, 2987 (1973).
 D. W. Carlyle, O. F. Zeck, Inorg. Chem., 12, 2978 (1973).

- 4. A. McAuley, Coordin. Chem. Rev., 5, 245 (1970).
- 5. R. Lutter, T. F. Rutter, Z. anorg. Chem., 54, 1 (1907); G. Wagner, W. Preiss, Z. anorg. Chem., 168, 265 (1928)
- 6. F. H. Westheimer, Chem. Rev., 45, 419 (1949).
- 7. I. Cadariu, I. Baldea, Stud. Univ. Babes-Bolyai Chem., 16 (2), 93 (1971).

- Cadariu, I. Baldea, Stud. Univ. Babes Bolyai Chem., 16 (2), 93 (1971).
 I. Baldea, Stud. Univ. Babes Bolyai. Chem., 32 (2), 42 (1987).
 G. Niac, S. Schön, I. Baldea, Stud. Univ. Babes Bolyai. Chem. 31 (2), 31 (1986).
 D. J. Kwong, D. E. Penninton, Inorg. Chem., 23, 2528 (1984).
 P. H. Connet, K. E. Wetterhalm, J. Amer. Chem. Soc., 107, 4282 (1985).
 D. L. Leussing, I. M. Kolthoff, J. Amer. Chem. Soc., 75, 3904 (1953); D. L. Leussing, L. Newman, J. Amer. Chem. Soc., 75, 3904 (1953); D. L. Leussing, I. Newman, J. Amer. Chem. Soc., 75, 3328 (1963).
 J. H. Espenson, E. L. King, J. Amer. Chem. Soc., 80, 2920 (1958).
 F. R. Duke, W. Courtney, J. Phys. Chem. 56, 19 (1952).
 A. I. Rivkind, I. V. Iablokov, Doklady Fiz. Khim., 159, 980 (1964).
 A. Ouchi, I. Taminaga, T. Takcuchi, Sci. Pap. Coll. Gen. Educ. Univ. Tokyo.

- 17. A. Ouchi, I. Taminaga, T. Takcuchi, Sci. Pap. Coll. Gen. Educ. Univ. Tokyo, 21, 131 (1971), Chem Abstr., 80, 20052.
- 18. N. N. Kundo, N. P. Keier, Kinetika i Kataliz., 8, 786 (1967).

SOLVENT EXTRACTION OF PRASEODIUM(III) AND SAMARIUM(III) WITH DI-(2-ETHYLHEXYL)DITHIOPHOSPHORIC ACID

MARIA CURTUI* and IONEL HAIDUC*

Received : 22 November, 1988

Solvent extraction of praseodium(III) and samarium(III) from aqueous perchlorate, nitrate and chloride solutions with di-(2-ethylhexyl)dithiophosphoric acid (HEhdtp) into different organic solvents (benzene, ether, n-butanol, carbon tetrachloride chloroform and cyclohexanone) was investigated. The effect of various factors on the extraction process was determinated in order to ascertain the nature of the extracted species. The dependence of the distribution ratio on the pH and concentration of metals in aqueous phase suggests an ion exchange mechanism:

 $Ln^{3+} + 3(HEhdtp)_{0} \rightleftharpoons [Ln(Ehdtp)_{3}]_{0} + 3H^{+}$

High distribution ratios are not obtained in either polar or nonpolar organic solvents.

Introduction. In previous papers [1-4] we have investigated the extraction of uranium(VI), thorium(IV), lanthanum(III) and cerium(III) with di-(2-ethylhexyl)dithiophosphoric acid (HEhdtp) in different organic solvents. The results show that rare earths are poorly extracted, compared to uranium (VI) and thorium(VI). Since it is of interest to investigate the possibility of using dialkyldithiophosphoric acids in the separation of uranium(VI) and thorium (IV) from rare earths, we extended the extraction studied to other systems. In this paper we report the results obtained in the extraction of praseodium(III) and samarium(III).

Experimental. All reagents used were of analytical grade purity. Rare earth salts, phosphorus pentasulfide, and Arsenazo I were supplied by Aldrich Chemie and Ventron A.G., W. Germany. The extracting reagent, di-(2-ethylhexyl)dithiophosphoric acid, was prepared by reaction of phosphorus pentasulfide with 2-ethylhexanol [5].

A Specol C. Zeiss Jena (DDR) spectrophotometer was used for the colorimetric determination of Pr(III) and Sm(III). The concentration of hydrogen ions in the aqueous phase was determined with an ORION Model 611 pH-meter and by titration with NaOH.

with an ORION Model 611 pH-meter and by titration with NaOH. From freshly prepared di-(2-ethylhexyl)dithiophosphoric acid 1 M solutions of desired concentrations (C) were obtained for use in the extraction measurements.

The aqueous phases, with variable metal concentrations, were prepared from stock solutions of rare earths. The Pr(III) and Sm(III) content of the stock solutions was determined by EDTA titration [6].

Extraction procedure. A volume of 10 ml. of properly diluted extracting reagent, HEdhtp, was equilibrated for 5 minutes with an equal volume of an aqueous layer containing the desired amount of hydrogen and perchlorate ions and rare earths. Preliminary experiments have shown that this time is suficient to achieve the equilibrium. After the phases were separated by gravity, the concentration of rare earths in the aqueous phases was determined photometrically, using Arsenazo I[7]. The data obtained were used to calculate the distribution ratios (D). In all experiments the ionic streanght was kept constant (1M) with perchloric acid and sodium perchlorate.

^{*} Univesity of Cluj-Napoca, Faculty of Chemical Technology, 3400 Cluj-Napoca, Romania

Distribution ratios in the extraction of

praseodium (III) and samarium (III) with HEhdtp in various solvents

Table 1

$$\begin{split} \mathbf{C}_{\mathrm{HEhdtp}} &= 10^{-1} \ \mathrm{M} \ ; \ C_{\mathrm{Pr}} = 9.3 \times 10^{-4} \ ; \\ C_{\mathrm{Sm}} &= 8.7 \times 10^{-4} \ ; \ \mathrm{pH} = 3 \end{split}$$

E L	Distribution ratio(I				
Solvent -	D _{Pr}	D _{Sm}			
Benzene -	1.73	2.61			
Carbon tetrachloride	3.81	4.66			
Chloroform	2.57	3.90			
Diethyl ether	1.39	1.76			
n-Butanol	1.06	1.29			
Cyclohexanone	5.40	5.80			

Results and discussion.

Distribution ratios in various solvents. The rezults of the distribution measurements of praseodium(III) and samarium(III) with di-(2-ethylhexyi)dithiophosphoric acid in several organic solvents, given in Table 1, show that the variation of distribution ratios, D, observed is small. However, in polar oxygen containing solvents (strong donors) the distribution ratios are larger.

The extraction of praseodium(III) and samarium(III) with di-(2-ethylhexy1) dithiophosphoric acid in benzene was investigated in detail. The effect of various factors on the extraction process was determined in order to ascertain the nature of the extracted species.

The influence of aqueous phase acidity. The data on the extraction of praseodium(III) and samarium(III) with di-(2-ethylhexyl)dithiophosphoric acid, reflecting the dependence of the partition on the aqueous phase acidity, at two different cocentrations of the extractant in the organic phase, are presented in Fig. 1 and 2. It can be seen that the distribution ratio increases with increasing pH of the aqueous phase, which reveals an ion exchange mechanism. The deviation of the slopes of curves from the expected value of 3, which represents the charge of the rare earth cation, could be explained in two ways: (a) by formation of some extracted species, involving anions other than Ehdtp⁻, which would participate in the neutralization of the positive charge of the metal ion; (b) by complexation of Pr(III) and Sm(III) in the aqueous phase, with the result that the rare earth concentration available for extraction is diminished. Since the only other anion present in the aqueous phase was perchlorate, the

Fig. 1. Extraction of Pr(III) with HEhdtp in benzene. $C_{\text{HEhdtp}} = 10^{-1} \text{ M}$ (curve 1), $2 \times 10^{-1} \text{ M}$; (curve 2); $C_{\text{Pr}} = 10^{-4} \text{ M}$.

Fig. 2. Extraction of Sm(III) with HEhdtpin benzene. $C_{\text{HEhdtp}} = 10^{-1} \text{ M}$ (curve 1), $2 \times 10^{-1} \text{ M}$ (curve 2); $C_{\text{Sm}} = 8 \cdot 7 \times 10^{-4} \text{ M}$

influence of varying the concentration of this anion upon the extraction was investigated. The data obtained show that participation of ClO_4^- in the formation of the sextracted species does not occur.

A strong tendency of Pr(III) and Sm(III) to form with dialkyldithiophosphate anions (dtp^-) complex anions such as $[Pr(dtp)_4]^-$ and $(Sm(dtp)_4]^-$ is well established [8]. These anionic species are insoluble in the organic phase and their formation reduces the degree of extraction. Thus, we preffer this explanation for the observed distribution ratios in our experiments.

The extraction data obtained for different metal concentrations within the range 0.0005-0.005 M show that no polymeric species are formed in the aqueous and organic phases (Fig. 3).

Fig. 3. Extraction of rare earths with HEhdtp in benzene at various metal concentrations. Curve 1: $C_{\rm Pr} = 5.6 \times 10^{-4} \,\mathrm{M}(\circ)$; 4.65 × 10⁻⁸ M (•); Curve 2: $C_{\rm Sm} = 4.3 \times 10^{-4} \,\mathrm{M}(\circ)$; 4.3 × 10⁻⁸ M (•).

The influence of the foreign anions. The extraction experiments were carried out from perchlorate, nitrate and chloride solutions of ionic strength 1 M. The results presented in Table 2 show no significant difference in the distribution ratios.

Extraction effectivity. From the distribution ratios obtained, the effectivity of the extraction, E(%), has been calculated. The data presented in Table 3 show that the effectivity of extraction for Pr(III) and Sm(III) is not higher than 68%.

Conclusions. The data presented above show that the extraction of praseodium(III) and samarium(III) with di-(2-ethylhexyl)dithiophosphoric acid in organic solvents can be described by equation:

> $Ln^{3+} + 3 (HEhdtp)_0 \rightleftharpoons [Ln(Ehdtp)_3]_0 + 3 H^+$ Ln = Pr, Sm

Table 2

Influence of the inorganic anions upon the extraction of Pr (III) and Sm (III) with HEhdtp in benzene

$$C_{\rm pr} = 9.3 \times 10^{-4} \,\mathrm{M};$$

 $C_{\rm Sm} = 8.7 \times 10^{-4} \,\mathrm{M}; \,\mathrm{pH} = 3$

Inorganic	Distribution ratio				
anion	D _{Pr}	D_{Sm}			
C104	1.73	1.94			
NO.	1.59	1.80			

The extraction of Pr(III) and Sm(III) with HEhdtp

 $C_{\rm Pr, Sm} = 10^{-4} \, {\rm M}; \ C_{\rm HEhdtp} = 0.1 \, {\rm M}$

	Pr			Sm	
pH	D	E(%)	рĦ	D	E(%)
0.66	0.05	4.70	0.11	0.05	4.76
1.28	0.05	4.90	0.64	0.05	5.12
1,62	0.11	10.07	1.25	0.17	14.23
1.97	0.22	17.89	1.64	0.60	37.57
2.25	0.66	39.15	1.99	1.09	52.13
2.43	1.73	63.36	2.34	1.91	65.58
2.75	1.99	66.50	2.53	2.09	67.63

Table 3

High distribution ratios are not obtained in either polar or nonpolar organic solvents. This behavior can be understood in terms of high coordination numbers of rare earth cations. Thus, by coordination of three donor ligand groups (Ehdtp-), required to neutralize the positive charge of the rare earth cation, not all the coordination sites are occupied. Additional water molecules or another donor ligand group may occupy these sites to from complexes such as Ln(Ehdtp)₃.nH₂O and [Ln(Ehdtp)₄]⁻, which exhibit lower solubility in the organic solvents. The replacement of these water molecules by hydrophobic ligands and the formation of neutral complexes is a condition for good extraction of rare earths. Weak extractants, such as butyl alcohol, ethers can replace only one water molecule in the hydrated complexes, or none. These solvents extract the rare earths with low distribution ratios.

REFERENCES

- Gh. Marcu, M. Curtui, I. Haiduc, J. Inorg. Nucl. Chem., 39, 1415 (1977).
 M. Curtui, I. Haiduc, Gh. Marcu, J. Radioanal. Chem., 44, 109 (1978).
 I. Haiduc, Gh. Marcu, M. Curtui, Rev. Roumaine Chim., 22, 625 (1977).
 I. Haiduc, M. Curtui, I. Haiduc, I. Silaghi-Dumitrescu, in "Chemical Aspects of Nuclear Methods of Analysis IAEA-TECDOC-350". Viena, 1985, p. 101-172. 5. I. S. Levin, V. V. Sergeeva, V. A. Tarasova, V. I. Varentsova, T. I. Rodin, Zhur. Neorg. Khim., 18, 1643 (1973)
- 6. F. S. Fritz, T. R. Oliver, D. L. Piotrzyk, Analyt. Chem., 30, 1111 (1958). 7. H. Onishi, H. Nagai, Y. Toiota, Anal. Chim. Acta., 26, 528 (1962).
- 8. S. Spiliadis, A. A. Pinkerton, Inorg. Chim. Acta, 75, 115 (1983).

ORGANOTIN DIPHENYLPHOSPHINATES, R_{4-n}Sn(O₂PPh₂)_n

CRISTIAN SILVESTRU*, FLORIN ILIES** and IONEL HAIDUC**

Received : 23 November, 1988

Di- and triorganotin diphenylphosphinates, $R_2 Sn [O(O)PPh_2]_2$ (R = Me, Bu^{*}, Bz, Ph) and $R_3 SnO(O)PPh_2$ (R = Me, Cy, Bz, Ph), were obtained from ammonium diphenylphosphinate and the corresponding organotin chlorides, in benzene. All the derivatives were high- or non-melting white powders, which were characterized by infrared spectroscopy. On the basis of IR data chain polymeric structures, with bridging diphenylphosphinato ligands, were proposed for both type of compounds.

Introduction. Various triorganotin-, $R_3SnO(O)PPh_2$ (R = Me, Et, Prⁿ, Buⁿ, Bz, Ph) [1-7], and diorganotin diphenylphosphinates, $R_2Sn[O(O)PPh_2]_2$ (R = Et, Buⁿ, Bz, Ph) [1,7-10], are mentioned in literature, but most of them are poorly characterized. Only one paper reported molecular mass measurements in benzene solutions, which indicated dimeric association for trialkyltin (R = Et, Prⁿ, Buⁿ) and triphenyltin derivatives (structure *a*), while the trimethyl-

tin diphenylphosphinate was found to be a tetramer [1]. Infrared spectra suggested the coordination of the oxygen atom of the phosphoryl group, P=O, to a tin atom of other molecule, thus leading to a pentacoordinate geometry around the metal atom [1]. Some of the triorganotin derivatives have been screened for biologic activity or as oil stabilizers [1-3,6]. Diorganotin diphenylphosphinates were even less investigated; only the synthesis of some derivatives has been reported, without any detailed characterization [1,7-10].

Since we have investigated organotin dialkyl- and diphenyl-dithiophosphinates, $R_{4-n}Sn(S_2PR'_2)_n$ (R' = Me, Et, Ph) [11-13], we were interested in comparative studies with their oxygen analogues, *i.e.* organotin phosphinates, $R_{4-n}Sn[O(O)PR'_2]_n$.

University of Cluj-Napoca, Institute of Chemical and Biochemical Energetics, 3400 Cluj-Napoca, Romania

^{**} University of Cluj-Napoca, Chemistry Department, 3400 Cluj-Napoca, Romania

In this paper we report the synthesis of some di- and triorganotin diphenylphosphinates and their IR spectra in solid state, in an attempt to obtain some information about their possible structure.

Results and disseussions. Organotin diphenylphosphinates were prepared by reacting stoichiometric amounts of the ammonium diphenylphosphinate, Ph₂P₁O)ONH₄, with the corresponding organotin chloride in benzene, according to the reaction:

$$R_{4-n} \operatorname{SnCl}_{n} + n \operatorname{Ph}_{2}P(O)ONH_{4} \rightarrow R_{4-n} \operatorname{Sn}[O(O)PPh_{2}]_{n} + n \operatorname{NH}_{4}Cl$$

The attempt to react the organotin chlorides with the free acid, a method which has been successful with diphenyldithiophosphinic acid [12], failed because of the lower strength of the phosphinic acid.

Melting points and yields are given in Table 1. All the organotin diphenylphosphinates were white powders, insoluble in organic solvents or water, except the trimethyltin derivative which can be recrystallized from acetone and is partially soluble in benzene. Most of the compounds didn't melt below 360 °C.

All the synthesized compounds were investigated by IR spectroscopy and the spectra were compared with those of starting materials and other related compounds. Bands were assigned for phosphorus-oxygen and tin-carbon stretching vibrations (Table 2.). Useful informations about the geometry of the organotin moiety can be obtained from the number of the tin-carbon stretching frequencies [14]. The presence of two Sn-C bands indicates the angular orientation of the Sn-C bonds, either in tri and dialkyltin dreivatives. For phenyltin compounds the tin-carbon stretching vibrations cannot be observed since they appear below 400 cm⁻¹ [14, 15].

Table 1

Table 2

Preparation of	
R _{4-n} Su [0(0)PPh ₂] _n	

Infrared	data	for	\mathbf{R}_{4-n}	Sn	[0(0)PPb ₂	1 11	(in	em ^{−1})	, a
----------	------	-----	--------------------	----	------	-------------------	------	-----	--------------------	-----

	R _{4-n} Su [0(0)PPh ₂] _n		ν (P-0)	ν (P=0)	v _{as} (Sn-C)	$v_{s(Sn-C)}$
ш.р. (°С)	η(%)	Me ₂ Sn[O(O)PPh ₂] ₂	1048s	1145s	592m	545w
>360	94	$\operatorname{Bu_2^{\#}Sn}[O(O)\operatorname{PPh_2}]_2$	1025s 1049s 1020s	1133s 1135s 1126s	636 w	586w
>360	90	$Bz_{2}Sn[O(O)PPh_{2}]_{2}$	1020s	1120s	453w	440w
295	86	$Ph_{s}Sn[O(O)PPh_{2}]_{2}$	1019s 1049s	1119s 1133s,		_
>360	82	Me ₃ SnO(O)PPh ₃	1025s 1047s	br 1130s,	552m	obscd.
>360a	86		1022s	br	000	C 477
285	96	Cy ₈ SnO(0)PPn ₈	1039s 1022s	1145s 1127s	009W	04/W
290	77	$Bz_3SnO(O)PPh_3$	1040s 1018s	1133s 1121s	454w	4 40 w
>360b	61	Ph ₃ SnO(O)PPh ₃	1038s 1021s	1140s 1133s	$\overline{\nabla}$	-
	m.p. (°C) > 360 295 > 360 > 360 > 360 ^a 285 290 > 360 ^b	m.p. (°C) $\eta(\%)$ >36094>3609029586>36082>360a862859629077>360b61	m.p. (°C) $\eta(\%)$ $Me_3Sn [O(O)PPh_2]_2$ >36094 $Bu_3^{*}Sn [O(O)PPh_2]_2$ >36090 $Bz_3Sn [O(O)PPh_2]_2$ 29586 $Ph_3Sn [O(O)PPh_2]_2$ >36082 $Me_3SnO(O)PPh_2$ >360a86 $Cy_3SnO(O)PPh_2$ 29596 $Bz_3SnO(O)PPh_2$ 29077 $Bz_3SnO(O)PPh_2$ >360b61 $Ph_3SnO(O)PPh_2$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

^a > 360°C [1]; ^b 250°C [3], > 360°C [4].

^a s = strong; m = medium; w = weak; br = broad; obscd. = obscured

The signals assigned to P-O and P=O stretching vibrations are generally split, this behavior being not still elucidated. The P-O stretching vibrations are shifted to greater wave numbers compared to those observed in the free acid ($\nu_{(P=0)} = 960 \text{ cm}^{-1}$), while the P=O stretching vibrations are shifted to smaller wave numbers than in the acid, Ph₂P(O)OH ($\nu_{(P=0)} = 1181 \text{ cm}^{-1}$ [16]) or in its methyl ester, Ph₂P(O)OMe ($\nu_{(P=0)} = 1230 \text{ cm}^{-1}$ [17]). This behavior suggested the coordination of the diphenylphosphinato ligand with both oxygen atoms to the metal atom, leading to an octahedral geometry around tin in diorganotin phosphinates, and a bipyramidal trigonal environment for triorganotin derivatives.

The low solubility of organotin diphenylphosphinates, either in organic solvents or water, and their high melting points suggest a chain, polymeric structure, for both type of compounds, and according to the IR spectra structure b and c are proposed for di- and triorganotin diphenylphosphinates, respectively.

None of the organotin phosphinates can be obtained in a crystalline form, thus preventing X-ray structure determination. Even trimethyltin diphenylphosphinate, which is soluble in acetone and somewhat in benzene, deposits from solution as a fine powder, without forming crystals suitable for X-ray analysis.

Indirect evidence for the ability of the diphenylphosphinato ligand to form bridges can be cited for organoantimony compounds. The coordinating ability of tin and antimony are similar and therefore a comparison may have some value. Thus an X-ray crystal structure determination for diphenylantimony (III) diphenylphosphinate, $Ph_2SbO(O)PPh_2$, revealed that the compound has a chain polymeric structure, with phosphinato groups bridging antimony atoms [18]. The antimony atoms can be regarded as five-coordinate, with bipyramidal trigonal geometry, the equatorial positions being occupied by two phenyl groups and a stereochemically active lone pair. The axial positions are occupied by the coordinated oxygen atoms of the diphenylphosphinato ligand. It can be asummed quite safely, that similar structures are achieved in the triorganotin diphenylphosphinates, with three organic groups in the equatorial positions.

A comparison of the organotin dithiophosphinates and (sulfur-free) phosphinates reveals interesting features. Thus, the sulfur-containing derivatives, $R_{4-n}Sn(S_2PR'_2)_n$, are molecular compounds, and the increase of the coordination number of tin is achieved *intra*molecularly. As a result, they are crystalline, soluble compounds with definite melting points. On the other hand, phosphinates, $R_{4-n}Sn(O_2PR'_2)_n$, are polymeric compounds, with the increased coordinaC. SILVESTRU et al,

tion number of tin achieved *inter*molecularly; this leads to poorly soluble (or insoluble), noncrystalline and non-melting compounds, whose structural investigation is much more difficult.

Experimental part. Organotin chlorides were commerical products or were synthesized by known methods: R = Bz [19], R = Cy (cyclo-C₆H₁₁) [20]. Diphenylphosphinic acid was obtained from the corresponding dithioacid by oxidation with nitric acid [21] and its ammonium salt precipitates from the ethanolic solution when anhydrous ammonia was bubbled in.

IR spectra were recorded in KBr pellets in the range 4000-400 cm⁻¹, with a SPECORD 75 IR C. Zeiss-Jena instrument.

Stoichiometric amounts of organotin chloride and ammonium diphenylphosphinate were refluxed in benzene for 2 hours, and the resulted white product was filtered off. The unreacted starting materials and the resulting NH₄Cl were removed from the final product by washing it with acetone and water.

Only the trimethyltin diphenylphosphinate, which was soluble in benzene, was isolated from the filtrate after the removal of the solvent, and then recrystallized from acetone. Melting points and yields are given in Table 1.

REFERENCES

- 1. I. G. M. Campbell, G. W. A. Fowles, L. A. Nixon, J. Chem. Soc., 1964, 1389.
- 2. H. Kubo, Agr. Biol. Chem. (Tokyo), 29, 43 (1965); Chem. Abstr., 63 (1965) 7032.
- 3. K. Issleib, B. Walther, J. Organometal. Chem., 10, 177 (1967).
- 4. H. Schumann, P. Jutzi, A. Roth, F. Schwabe, E. Schauer, J. Organometal. Chem., 10, 71 (1967).
- 5. R. E. Ridenour, E. E. Flagg, J. Organometal. Chem., 16, 393 (1969). 6. R. E. Ridenour, E. E. Flagg, U.S. Pat., 3,634,479 (1972): Chem. Abstr. 76 (1972) 127770.

- 7. S. K. Pandit, C. Gopinathan, Indian J. Chem., Sect. A, 15, 463 (1977)
 8. B. A. Arbuzov, N. P. Grechkin, Isvest. Akad. Nauk SSSR, 1956, 440.
 9. E. N. Walsh, A. P. Kopacki, U.S. Pat. 3,296,193 (1967); Chem. Abstr. 66 (1967) 55981.
- 10. E. N. Walsh, A. P. Kopacki, U.S. Pat. 3,358,006 (1967); Chem. Abstr. 68 (1968) 30705.
- 11. C. Silvestru, I. Haiduc, S. Klima, U. Thewalt, M. Gielen, J. J. Zuckerman, J. Organometal. Chem., 327, 181 (1987).
- 12. C. Silvestru, F. Ilies, I. Haiduc, M. Gielen, J. J. Zuckerman, J. Organometal. Chem., 330, 315 (1987).

- C. Silvestru. I. Haiduc, J. Organometal. Chem., 365, 83 (1989)
 R. C. Poller, The Chemistry of Organotin Compounds, Logos, 1970.
 M. E. Bishop, C. D. Schaeffer, J. J. Zuckerman, Spectrochim. Acta, 32 A, 1519 (1976).
- 16. L. I. Katzin, G. W. Mason, D. F. Peppard, Spectrochim. Acta, 34 A, 51 (1978).
- 17. E. E. Golubski, Synthesis, 1980, 632. 18. M. J. Begley, D. B. Sowerby, D. M. Wesolek, C. Silvestru, I. Haiduc, J. Organometal. Chem., 316, 281 (1986).

- K. Shishido, Y. Takeda, J. Kanigawa, J. Amer. Chem. Soc., 83, 538 (1961).
 H. G. Langer, Tetrahedron Letters, 1967, 43.
 W. A. Higgins, P. V. Vogel, W. G. Craig, J. Amer. Chem. Soc., 77, 1864 (1955).

96

VIBRATIONAL SPECTRA AND COORDINATION BEHAVIOUR OF ORGANO-DITHIOPHOSPHORUS LIGANDS

- ----

IOAN SILAGHI-DUMITRESCU*, ROBICA GRECU**, LUMINIȚA SILAGHI-DUMITRESCU* and IONEL HAIDUC*

Received: 23 November, 1988

The coordination behaviour of dithiophosphinic ligands, $R_2PS_2^-$, may be inferred from Δv_{PS} , taken as the difference of vibrational frequency of PS₂ groups. Thus, a Δv_{PS} of 50 to 75 cm⁻¹ shows an isobidentate bonding, while differences larger than 100 cm⁻¹ are illustrative for monodentate ligation. Intermediate values of Δv_{PS} such as 85 to 95 cm⁻¹ are found mostly in compounds with anisobidentate phosphinates. This result seems to apply also for dithiophosphonates, $R(R^+O)PS_2^-$, but not for dithiophosphates, $(RO)_2PS_2^-$.

Introduction. Organo-dithiophosphorus ligands, including $R_2PS_{22}^-$ (dithiophosphinates), $R(R'O)PS_2^-$ (dithiophosphonates) and $(RO)_2PS_2^-$ (dithiophosphates), readily form coordination compounds and a wealth of experimental data is available by now in this field [1-4]. The most common coordination patterns exhibited by these ligands are those shown bellow:

X-Ray diffraction data confirm each of these structures. For other modes of bonding of the ligand (e. q. diconective and triconective bridges) the reader is reffered to the rewiev by Haiduc [1] and references therein. This paper deals only with the three former (a, b, c) types.

Although such an elaborated method as X-ray diffraction is considered to bring the ultimate evidence of a certain structure, it is still worthwile to use the simpler ways to get rapid information upon the compounds investigated.

The coordination of dithiophosphorus ligand is influenced not only by the metal (acceptor) but also by the substituents on the phosphorus atom. Infrared spectra are rather sensitive to structural modifications, so we tried to correlate the vibrational frequencies attribuable to PS_2 groups and the actual coordination environment of these ligands.

Results and discussion. The limiting case of monodentate bonding a implies the presence of a P=S double and P-S single bonds. Based on a large number

7 - Chimia nr. 1/1989

^{*} University of Cluj-Napoca, Chemistry Department, 3400 Cluj-Napoca, Romania

^{**} Institute of Chemistry, 3400 Cluj-Napoca, Romania

of compounds containing, the PS bond, Thomas [5, 6] suggested that two frequency ranges are diagnostic for the presence of such groups: 862-675 cm⁻¹ (band I) and 725-515 cm⁻¹ (band II). There are also other assignments which restrict the P=S frequencies to band II only [7] or even to the narrower range [8] of 670-645 cm⁻¹. As high as it is, band I is probably due to the vibration of P-O, P-C or P-N bonds, strongly coupled with the stretching of PS bond. Normal coordinate analysis of dithiophosphates [9] and dithiophosphinates [10, 11] and dithiophosphonates [12] support this assumption.

On the other hand, the P-S stretching frequency should be lower, and Thomas [5, 6] assigned to these vibrations, medium intensity bands lying in the 613-477 cm⁻¹ region. For the PSH group, this range is contracted [6] to 548-490 cm⁻¹.

Whichever the range for P=S and P-S stretching would be accepted, it seems reasonable to suppose that the largest difference between these values (Δv_{PS}) would occur for the monodentate coordination **a**. Looking for the largest and smaller Δv_{PS} differences, in compounds with known structure, we found that the following ranging of Δv_{PS} applies well to dithiophosphinates and dithiophosphonates:

Δv_{PS}	Coodination
$>100 \text{ cm}^{-1}$	monodentate
80-95 cm ⁻¹	anisobidentate
50-75 cm ⁻¹	isobidentate

This behaviour is not unexpected since the normal coordinate analyses previously reported, revealed the high ressemblance of vibrational couplings in dithophosphinates and dithiophosphonates [12].

In order to illustrate the above statement we give in Table 1 some compounds containing P=S and P-S bonds. All cases cited suggest that Δv_{PS} larger than

Table 1

Monodentate dithiophosphinates							
Compound		¥ _{P=S}	v _{P-s}	۵v _{PS}	Literature		
(CH ₃) ₂ P(S)SCH ₃		605	465	140	[13]		
(C ₁ H ₅) ₁ P(S)SCH ₁		588	472	116	[13]		
$(C_{g}H_{s})_{2}P(S)SH$		650	530	120	[14]		
$(C_6H_5)_2PS_2Sb(C_6H_5)_2$		640	535	105	[15]		
$(CH_3)_2 PS_2 Sn(CH_3)_3$		601	484	117	[16]		
$(C_{\mathfrak{s}}H_{\mathfrak{s}})_{\mathfrak{s}}PS_{\mathfrak{s}}Sn(C_{\mathfrak{s}}H_{11})_{\mathfrak{s}}$		655	536	119	[17]		
$(C_8H_8)_3PS_8Sn(CH_8C_8H_8)_8$		651	531	120	[17]		
$(C_{s}H_{s})_{s}PS_{s}Sn(C_{s}H_{s})_{s}$	S. C.	659	535	124	[17]		
(C _s H _s) _a PS _a Sn(CH _s) _a		656	539	117	[17]		
$(C_1H_5)_2PS_2Sn(CH_3)_3$		597	458	139	[18]		
$(C_{s}H_{s})_{s}PS_{s}Sn(C_{s}H_{s})_{s}$		593	468	125	[18]		
$(C_{3}H_{5})_{3}PS_{3}Sn(C_{4}H_{11})_{3}$		605	472	133	[18]		
(C ₂ H ₅) ₂ PS ₃ Sn(CH ₂ C ₆ H ₅) ₃	÷ '	603	488	115	[18]		

∆v are in cm -1

100 cm⁻¹ are indicative of the presence of P=S and P-S bonds, and monodentate coordination respectively.

Bis(dimethyldithiophosphinato)Ni(II) contains an almost square planar Ni(II), with a symmetric bidentate dithiophosphinate [19]. The normal coordinate analysis [11] carried out on a 1:1 model of C_{2v} symmetry lead to the following assignments in the I.R. region of interest:

511 cm ⁻¹	v_{sym} (PS ₂) + v_{sym} (PC ₂)
585 cm ⁻¹	$v_{antisym}$ (PS ₂)
732 cm ⁻¹	$v_{antimsy}$ (PC ₂)
736 cm ⁻¹	$\nu_{sym}(PC_2) + \nu_{sym}(PS_2) + \delta(CPC)$

It can be noticed that $v_{antisym}$ (PS₂) is pure vibration while v_{sym} (PC₂) mixes in v_{sym} (PS₂). In Table 2, v(PS) values are recorded for compounds containing

Table	2
-------	---

Biochtate atmophosphinates								
Compound	ν ₁	V ₂	Δv_{PS}	Coordination pattern	Lit.			
{(CH _a), PS,], Ni	585	512	73	isobidentate	[14, 11]			
[(C,H,),PS,],Ni	622	574	48	isobidentate	[20, 21]			
$[(C_{a}H_{5})_{2}PS_{2}]_{2}VO$	639	568	71	isobidentate	[22]			
[(CH ₃) ₂ PS ₂],VO	596	503	93	anisobidentate	[22]			
{(CH ₃) ₂ PS ₂] ₃ V	592	505	87	anisobidentate	[23]			
$[(C_{e}H_{s})_{2}PS_{e}]_{3}Cr$	590	505	85	anisobidentate	[24]			
$[(C_{8}H_{5})_{2}PS_{2}]_{2}Sn(CH_{3})_{2}$	644	542	102	anisobidentate	[17]			
$[(C_{\beta}H_{\beta})_{2}PS_{2}]_{2}Sn(C_{\beta}H_{\beta})_{2}$	650	549	101	anisobidentate	[17]			
$[(C_aH_5)_2PS_2]_2Sn(C_aH_6)_2$	646	544	102	anisobidentate	[17]			
$[(C_6H_5)_2PS_2]_2Sn(C_6H_5CH_2)_2$	644	546	98	anisobidentate	[17]			

lidentate dithiophosphinates

 $\nu_{\rm r}$ ν are in cm -1

bidentate phosphinates. Isobidentate and anisobidentate distinction is made on the basis of the above proposed ranging of Δv_{PS} . Interesting examples offer the last four items of this table, since Δv_{PS} are at the border of anisobidentate and monodentate coordination. The X-ray determined structure of (CH₃)Sn $[S_2P(C_2H_5)_2]_2$ show [18] the existence of two normal Sn-S bonds (2,476A). The other two SnS distance (3.336) A, although much longer than a normal SnS bond, is still shorter than the sum of Van der Waals radii denoting a weaker interaction. In terms of our Δv_{PS} values, this situation may be described as an severely anisobidentate coordination.

In order to give more confidence to these assignments, we have carried out a set of normal coordinate calculations on bis(dimethyldithiophosphinate) Ni(II), with various PS and NiS force constants, such that a stepwise transformation from isobidentate to anisobidentate and finally monodentate coordination to be simulated. I. SILAGHI-DUMITRESCU et al.

Table 3 ilustrates the influence of inequal force constants on the calculated values of P-S stretching frequencies. These figures show that as the difference between the PS force constant increase from zero (typical for isobidentate coordination) to about 20% in a hypothetical anisobidentate dithiophosphinate, Δv_{PS} increases from 60 to 90 cm⁻¹. Hence, 50 to 95 cm⁻¹ values of Δv_{PS} could be correlated with bidentate behaviour.

							1	able 3
The	influence	of fps.	and f _{PS}	force	constants	of	the	calcu-
lated	l Δv _{ps} fre	quencie	s in NI (b	is-dim	eth yldithio	ph	osph	inates-

v _(PS)	f _{PS}	±5%	±10%	±15%	±20%
VIDEI	580	582	583	586	588
V(PS.)	512	512	508	503	498
$\Delta v_{(PS)}$	68	70	75	83	90

The available experimental data on dithiophosphonates (see Table 4), afforded to verify the predictive power of Δv_{PS} .

Table 4

Lit

our data

our data

[25]

[26]

[25]

Compound	۷ 1(PS)	ν _{2(PS)}	Δν _{PS}	Coordination pattern		
$(C_2H_5)(C_3H_7O)P(S)SH$	675	542	133	monodentate		
$[(C_{1}H_{5})(CH_{3}O)PS_{1}]_{3}VO + Py$	643	510	133	monodentate		

530

532

570

80

83

73

anisobidentate

anisobidentate

isobidentate

610

615

643

The coordination patterns of dithiophosphonates

Provided additional information is available (from molecular weight measu-
rements for example) to assure that only monomeric species are present in the
sample investigated, infrared spectra allow to distinct isobidentate, anisobiden-
tate and monodentate coordination of dithiophosphinates and dithiophosphonates
with a reasonable degree of confidence.

LITERATURE

 $[(C_3H_5)(C_3H_7O)PS_2]_2Ni$

 $[(CH_3OC_8H_4)(CH_3O)PS_2]_2VO$

 $[(C_2H_5)(CH_3O)PS_2]_3Ni$

1. I. Haiduc, Revs. Inorg. Chem., 3, 353 (1981). 2. J. R. Wasson, G. M. Woltermann, A. J. Stoklosa, Fortschr. Chem. Forsch., 35, 65 (1973).

- 3. W. Kuchen, H. Hertel, Angew. Chem. Internal. Ed., 8, 89 (1969).
- 4. R. C. Mehrotra, G. Srivastava, B. P. S. Chauhan, Coord. Chem. Rev., 55, 207 (1984)
- 5. R. A. Chittenden, L. C. Thomas, Spectrochim. Acta, 20, 1679 (1964)
- 6. L. C. Thomas, "The Identification of Functional Groups in Organophosphorus Compounds", Academic Press, London, New York, San Francisco, 1977 7. E. M. Popov, M. I. Kabachnik L. S. Mayauts, Uspekhi Khim., 1961, 846 8. L. Almaşi, A. Hantz, L. Paskucz, Bul. Acad. R.P.R., 13, 245 (1962); 13, 209 (1962) 9. W. Rudzinski, G. T. Behnke, Q. Fernando, Inorg. Chem., 16, 1206 (1977) 10. I. Silaghi-Dumitrescu, I: Haiduc, Rev. Roumaine Chim., 25, 815 (1980) 11. J. Silaghi-Dumitrescu, J. Haiduc, Rev. Roumaine Chim., 25, 815 (1980)

- 11. I. Silaghi-Dumitrescu, I. Haiduc, Rev. Roumaine Chim., 23, 823 (1980) 12. I. Halduc, I. Silaghi-Dumitrescu, R. Grecu, R. Grecu, R. Constantinescu, L. Silaghi-Dumitrescu, J. Mol. Structure, 114, 467 (1984) 13. R. Pantzer, W. Schmidt, J. Goubeau, Z. Anorg. Chem., 393, 262 (1973).

- B. Krebs, G. Henkel, Z. anorg. Chem., 475, 143 (1981).
 S. C. Silvestru, L. Silaghi-Dumitrescu, I. Haiduc, M. J. Begley, M. Nunn, D. B. Sowerby, J. Chem. Soc. Dalton Trans., 1986, 1031
 K. C. Molloy, M. B. Hossain, D. van der Helm, J. J. Zuckerman, Inorg.
- Chem., 20, 2172 (1981).
- Ilies, I. Haiduc, M. Gielen, J. J. Zuckerman, J 17. C. Silvestru, F. Organometal. Chem., 330, 315 (1987).
- 18. C. Silvestru, I. Haiduc, S. Klima, U. Thewalt, M. Gielen, J. J. Zuckerman, J. Organometal. Chem., 327 (1987)
- 19. P. E. Jones, G. B. Ansell, L. Katz, Acta Cryst. Sect. B., 23, 1939 (1969).
- 20. P. Porta, A. Sgamellotti, N. Vinciguerra, Inorg. Chem., 10, 545 (1971) 21. R. N. Mukherjee, V. V. Krishna Rao, J. Gupta, Indian J. Chem., 4, 209
- (1966).
- 22. R. G. Cavell, E. D. Day, W. Byers, P. M. Watkins, Inorg. Chem., 11, 1591 (1972).
- 23. R. G. Cavell, E. D. Day, W. Byers, P. M. Watkins, Inorg. Chem., 10, 2716 (1971).
- 24. R. G. Cavell, W. Byers, E. D. Day, Inorg. Chem., 10, 2710 (1971).
- 25. O. Cozar, R. Micu-Semeniuc, V. Znamirovschi, I. Haiduc, Rev. Roumanie Phys., 33, 1131 (1988).
- 26. S. P. Bone, D. B. Sowerby, R. Constantinescu, I. Haiduc, J. Chom. Res. (M), 1979, 930.

1211 22 1

RECENZII

D. L. Massart, B. G. M. Vandeginste, S. N. Deming, Y. Michotte; L. Kaufman, Chemometrics: a texthook, Elsevier, Amsterdam, 1988, 488 p., Data handling in science and technology — Vol. 2.

The word chemometrics was coined in 1972 by the authors, as the chemical discipline that uses mathematical, statistical and other methods employing formal logic a) to design or select optimal measurement procedures and experiment, and b) to provide maximum relevant chemical information by analyzing chemical data. Following the intensive theoretical investigations made in last years (partly by the authors) chemometrics became an independent discipline with wide-spread applications The first book on this subject appeared ten years ago (D. L. Massart, A. Dijkstra, L. Kaufman, "Evaluation and Optimization of Laboratory Methods and Analytical Procedures". Elsevier, Amsterdam, 1978), followed by an other general treatise on chemometrics (M. A. Sharaf, D. L. Illman, B. R. Kowalski, ...Chemometrics", Wiley, New York, 1986). There are other books too on chemometrics, although with more specific subjects. There exist also two journals which are specifically directed towards this field: Journal of Chemometrics and Intelligent Laboratory Systems (published by Elsevier) and Journal of Chemometrics (published by Wiley). General information can also be obtained from the two yearly reviews on chemometrics in Analytical Chemistry or the section on chemometrics from Analytica Chimica Acta. There exists also a Chemometrics Society with a Newsbulletin.

The purpose of this book is to give an introduction in the science of chemometrics considered by the authors as a discipline of analytical chemistry, or with some exaggeration even as the essentials of analytical chemistry. The book is organized in 27 chapters following a logical way of the knowledge and increasing mathematical difficulties, respectively. The first chapters deal with performance characteristics, a set of criteria being defined (precision and accuracy, categories of errors, limits of detection and determination, selectivity and specificity, interferences. Measures of information are used for this purpose, and for this reason a chapter is devoted to information theory. Chapters 1-11 also introduce some of the basic statistical concepts (hypotesis testing, analysis of variance, straight line calibration, reliability and drift, etc.) what form the basis for the more sophisticated applications of Chaps. 12-27. Chapters 12-15 are devoted to a series of mathematically related methods concerned with regression, correlation and autocorrelation, and transformations. Separate chapters deal with data acquisition (Signals and Data, Chap, 12), signal processing (Chap. 15) such as signal enhancement by reduction of the noise level (filtering, smoothing), signal restoration (deconvolution, pseudo-deconvolution), characterization and modelling of the signal.

The step following data acquisition is translation to chemical information. Simple--component straight-line calibration (regression) is discussed in Chap. 5, and the generalization. to polynomials and multicomponent problems is discussed in Chap. 13. With the mathematical knowledge obtained in Chaps. 1-15 it is possible to study experimental optimization methods which is the subject of Chaps. 16-19. They treat response surface methodology, the use of analysis of variance and regression applied to optimization and introduce some methods such as the Simplex method, that are used specifically for optimization purposes. Chapters 20-23 are concerned with multivariate data analysis, or at least to an aspect that has been widely studied in recent years, namely pattern recognition. The fundamental idea is that, when a sample is characterized by many different analytical methods, these results form a pattern. This pattern is used to answer three questions, namely a) how to display multidimensional data in a lower, preferably two-dimensional space (Chap. 21) without loss of significant information; b) how to detect group of samples with similar pattern (Chap. 22) and c) how to classify an object in one of two or more known classes on the basis of its pattern (Chap. 23). Chapters 24-27 are dealing mainly with decision processes. Chapter 25 discusses some operations research methods, chapter 26 is about making decisions on the basis of analytical results when there is an element of uncertainty. In Chap. 27 aspects of control theory are used to derive a model for the selection of the sampling scheme and the analytical method to control a process.

The book is addressed to all, who carry out analytical determinations trying to obtain a validate estimate of the "true" value. It is outstanding by its comprehensive, high level content, as well as by excellent didactical qualities. Model calculations, resolved problems help the understanding. Since, according to the authors many references are irritating, they have chosen to cite in the text only the strictly necesary, but they give additional references as recommended reading at the end of most chapters. Undouptedly the book will be a standard reference for chemometrics.

L. KÉKEDI

12.3

Evolution of Size Effects in Chemical Dynamies (Parts 1 and 2), in *Advances in Chemical Physics* (I. Prigogine and Stewart A. Rice, Eds.), vol. LXX, John Wiley and Sons, Interscience, New York, 1988, ISBN 0-471--62784-4.

The series Advances in Chemical Physics vol. LXX, was conceived in two parts: 556 pp (Part 1) and 592 pp (Part 2), respectively.

The editors' intent was to have authors present comprehensive analyses on subjects that focus on the study and evolution of size effects in chemical dynamics and to encourage the expression of individual points of view.

The approach to the presentation of subject overviews is most suitable for "Pew of us can any longer keep up with the flood of scientific literature, even in specialized subfields. Any attempt to do more and be broadly educated with respect to a large domain of science has the appearance of tilting at windmills. Yet the synthesis of ideas drawn from different subjects into new, powerful, general concepts is as valuable as ever, and the desire to remain educated persists in all scientists".

The subjects are distributed in a gradual manner, i.e. in an order that most adequately ensures a proper understanding of the size effects in chemical dynamics, viz. from diatomics to clusters, from independent and colective behaviour within atoms and molecules to fluctuations in spectral intensities and transition rates. Also are presented self-consistent-field method for vibrational excitations in polyatomic system and the spectroscopy and photodynamics of relatively large molecules, to extend then coverage on the solvation effects in four-wave mixing and spontaneous Raman and fluorescence lineshapes of polyatomic molecules, and too on the statistical theory of unimolecular processes, chaos and reaction dynamics etc. These make up the essentials of the 'problematique' covered in Part 1, which at the end is provided with an author index and a subject index.

Part 2 consists of overviews devoted to subjects ranging from ligand-stabilized metal clusters - their structure, bonding, fluxionality and the metallic states -, structural models for clusters produced in a free jet expansion. the solid/liquid phase behaviour in microclusters and the quantum mechanics of clusters to small clusters - reaction of van der Waals molecules and reactions of gas-phase metal clusters, the nucleation of crystals from melts and vibrational relaxation in condensed phases. Also are covered the size effects in encounter and reaction dynamic, the energy profiles for organic reactons in solution, and the activated rate processes in condensed phases : the Kramers theory revisited. This book, too, concludes with indices of subjects and authors, meant for rapid reference to the ideas of interest.

It was the editors' outspoken hope that such an approach would "both stimulate new research and serve as a personalized learning text for beginners in a field".

The two books of the Evolution of Size Effects in Chemical Dynamics are easy to read - the style is clear, concise and straightforward; the text is rich in formulas, and just the right amount of well reproduced diagrams is provided for a synthetic presentation of the aspects discussed. The concepts and techniques specific to the study of size effects in chemical dynamics are harmoniously presented, so as researchers may avail themselves of the experience of previous contributors to this domain of science.

We consider that the authors were successful in providing up-to-date accounts of some results of the studies that illustrate both expectations previously expressed and theoretical and experimental findings which have recently been incorporated in the science of size effects in chemical dynamics, the two books thus showing the evolution to date recorded in this field of science.

MARIA TOMOAIA-COTIȘEL

INTREPRINDEREA POLIGRAFICA CLUJ, Municipiul Cluj-Napoca, Cd. nr. 129/1989

1:07]

În cel de al XXXIV-lea an (1989), *Studia Universitatis Babeş -- Bolyai* apare în specialitățile : iatematică zică nimie :ologie-geografie iologie losofie .iințe economice iințe juridice torie lologie

In the XXXIV-th year of its publication (1989), Studia Universitatis Babes - Bolyai is issued s follows: iathematics hysics iemistry iology-geography iology hilosophy conomic sciences ridical sciences story nilology

Dans sa XXXIV-e année (1989), Studia Universitatis Babes - Bolyai paraît dans les spécialités:

athématiques nysique ninie iologie-géographie iologie nil sophie iences économiques iences juridiques stoire nilologie

43 870

Abonamentele se fac la oficiile poștale, prin factorii poștali și prin difuzorii de presă, iar pentru străinătate prin "ROMPRESFILATELIA", sectorul export-import presă, P. O. Box 12-201, telex. 10376, prsfir, București, Calea Griviței, nr. 64-66.