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ABSTRACT. This paper presents a QSAR study realized on a set of 40 dioxins, 
known as pollutants, substances that are toxic for the environment. The study 
is based on the hypermolecule approach and on the prediction by similarity 
clustering. The results show a good modeling of logP parameter with the 
correlation weighted descriptor and some topological indices derived from Cluj 
matrices and also with the calculated HOMO energy level for the set of studied 
molecules.  
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INTRODUCTION 

 
Dioxins are unwanted pollutants in the environment, occurring in 

industrial processes (incineration pulp and paper bleaching with chlorine), also 
in the manufacture of pesticides, fungicides or herbicides [1]. 

The term dioxin refers to dibenzo-p-dioxins (PCDD), polychlorinated 
dibenzofurans (PCDF) and coplanar polychlorinated biphenyls (PCBs) which 
show similar biological and toxicological properties. These compounds are 
contaminants of lipophilic fat and concentrate in biological systems. 

PCDDs/ PCDFs and PCBs have toxic effects on the nervous system, 
immune, endocrine and reproductive systems. International Agency for Research on 
Cancer has classified 2,3,7,8-TCDD as the most toxic congener of polychlorinated 
dibenzo-p-dioxins and classified in Group 1 carcinogen to humans [2-3]. 

Dioxins are odorless and colorless organic compounds, insoluble in 
water but soluble in fat. These compounds have in their structure carbon, 
hydrogen, oxygen and chlorine. Dioxins are biodegradable, but are persistent 
and bio-accumulates in foods [4]. 
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In general, exposure to dioxins in humans cause serious health problems 
such as cancer, chloracne, reproductive and developmental disorders. Human 
exposure to dioxins is achieved through diet (about 95%) and only a small 
amount of dioxinis taken by breathing or absorbed through the skin. Dioxins 
focus on the food chain, accumulate in animal fat, which explains why animals 
and animal products show a higher content of dioxins than plants or water. [5] 

TCDD is a carcinogen, an endocrine disrupter, an agent that induces 
oxidative stress both in humans and in vertebrates. TCDD exposure causes 
cardiovascular dysfunction, neuronal degeneration and even craniofacial 
malformations. [6-8]  

Chemical Graph Theory is a branch of mathematics applied to Chemistry. 
A graph ( , )G V E  is a pair of two sets, V (vertices) and E (edges), the last one 
being a binary relation defined on V [9]. A molecular graphs, in which vertices 
are atoms and edges are covalent bonds, can be represented by a number, a 
sequence number, a matrix or polynomial. A single number representing a graph 
is also called a topological index and is useful in QSAR/QSPR (Quantitative 
Structure–Activity/ Property Relationships) studies. 

 
 

DATA SET 
 

From the PubChem [10] database, we selected 40 molecular structures of 
dioxins with their log P associated values. LogP is a measure of hydrophobic 
interactions of ligands with a biological receptor. LogP values can be determined 
experimentally or computationally. Table1 lists the dioxin names (IUPAC, cf. 
Figure 1, left, numbering) and their logP values. On the set of all dioxin structures, 
a hypermolecule (Figure1, right) was built up, as a collection of common 
skeletal and uncommon substructures [11]. 
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Figure 1. Dioxin IUPAC (left) and the hypermolecule (right) with atom numbering 
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Table 1. Dioxins –IUPAC name (cf. Figure 1, left) and their log P 
 

 Name log P 

1 2,3,7,8-tetrachlorodibenzo-p-dioxin 6.4 
2 Octachlorodibenzo-4-dioxin 8.1 
3 2,7-dichlorodibenzo-4-dioxin 4.3 
4 1,2,3,6,7,8-hexachlorodibenzodioxin 7.4 
5 1,2,3,4,7,8-hexachlorodibenzodioxin 8.4 
6 1,2,3,4,6,7,8-heptachlorodibenzodioxin 7.5 
7 2-chlorodibenzo-4-dioxin 5 
8 2,8-dichlorodibenzo-4-dioxin 4.3 
9 1-Chlorodibenzo-p-dioxin 5 
10 2,3-dichlorodibenzo-4-dioxin 5.2 
11 1,2,3,7,8-pentachlorodibenzo-p-dioxin 6.6 
12 1,2,4-trichlorodibenzo-1,4-dioxin 4.9 
13 1,2,3,4-tetrachlorodibenzodioxin 7.2 
14 1,2,7,8-tetrachlorodibenzo-p-dioxin 6 
15 1,3,7,8-tetrachlorodibenzo-4-dioxin 6.3 
16 1,6-Dichlorodibenzo-para-dioxin 5.7 
17 1,3,6,8-tetrachlorodibenzo-p-dioxin 6.3 
18 1,3,7-Trichlorodibenzo-p-dioxin 5.7 
19 1,2,3,6,7,9-hexachlorodibenzo-p-dioxin  6.9 
20 1,2,3,4,6,7,9-Heptachlorodibenzodioxin 7.5 
21 1,2,3,8-tetrachlorodibenzo-p-dioxin  6 
22 1,3-Dichlorodibenzo-para-dioxin 5 
23 1,2,4,6,7,9-hexachlorodibenzo-p-dioxin  6.8 
24 1,2,3,4,7-pentachlorodibenzo-p-dioxin  7.8 
25 2,3,7-trichlorodibenzo-p-dioxin  5.8 
26 1,2,6,8-tetrachloro dibenzo-p-dioxin 6.4 
27 1,4,7,8-tetrachloro dibenzo-p-dioxin 6.4 
28 1,4,6,9-tetrachloro dibenzo-p-dioxin 5.6 
29 1,2,6,9-tetrachloro dibenzo-p-dioxin 5.6 
30 1,2,3,7-tetrachloro dibenzo-p-dioxin 6 
31 1,2,4,7,8-pentachlorodibenzo-p-dioxin  6.2 
32 1,2,4,8-tetrachloro dibenzo-p-dioxin 6.4 
33 1,2,4,7-tetrachloro dibenzo-p-dioxin 6.4 
34 1,2,4,6-tetrachloro dibenzo-p-dioxin 5.6 
35 1,2,3,9-tetrachloro dibenzo-p-dioxin 6.4 
36 1,2,3,6-tetrachloro dibenzo-p-dioxin 6.4 
37 1,3,6,9-tetrachloro dibenzo-p-dioxin 6.3 
38 1,2,4,9-tetrachloro dibenzo-p-dioxin 5.6 
39 1,2,4,6,8,9-hexachloro dibenzo-p-dioxin 6.8 
40 1,2,3,4,6,8-hexachloro dibenzo-p-dioxin 7.2 
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COMPUTATIONAL DETAILS  
 
The structures of dioxins have been optimized, in gas phase, at the 

Hartree-Fook HF (6-31g(d,p)) level of theory by Gaussian 09 [12]. Topological 
indices (see Table 2) have been computed by TOPOCLUJ software [13]; HOMO 
energy (in au) was computed by Gaussian 09. 

 
Table 2.Topologicaldescriptors and HOMO energy (au) 

 

Mol. Adjacency Detour Distance IE
[CfMax]

IE
[CfMin]

IP
[CfMax]

IP 
[CfMin] 

HOMO 

1 20 1700 570 62 620 420 2800 -0.318 
2 24 2700 920 130 950 760 4600 -0.337 
3 18 1300 410 36 460 300 2000 -0.308 
4 22 2200 730 92 780 590 3600 -0.328 
5 22 2200 730 93 770 580 3600 -0.328 
6 23 2400 820 110 860 670 4100 -0.332 
7 17 1200 340 26 390 250 1600 -0.301 
8 18 1300 410 36 460 300 2000 -0.307 
9 17 1200 330 26 380 250 1600 -0.302 
10 18 1300 410 37 460 300 1900 -0.307 
11 21 1900 650 77 690 500 3200 -0.323 
12 19 1500 460 49 510 380 2200 -0.314 
13 20 1700 540 64 580 440 2600 -0.317 
14 20 1700 560 62 610 430 2800 -0.318 
15 20 1700 560 62 610 430 2800 -0.320 
16 18 1400 400 36 450 320 1900 -0.310 
17 20 1700 550 61 600 430 2700 -0.322 
18 19 1500 480 48 530 360 2300 -0.315 
19 22 2200 720 92 770 590 3600 -0.330 
20 23 2400 810 110 850 680 4000 -0.334 
21 20 1700 560 62 600 430 2700 -0.318 
22 18 1400 400 37 450 310 1900 -0.308 
23 22 2200 710 91 760 600 3500 -0.332 
24 21 2000 630 77 680 510 3100 -0.323 
25 19 1500 490 49 540 360 2400 -0.313 
26 20 1700 550 61 600 440 2700 -0.320 
27 20 1700 550 62 600 430 2700 -0.321 
28 20 1800 540 61 580 450 2600 -0.325 
29 20 1700 540 61 590 450 2700 -0.322 
30 20 1700 560 62 610 430 2700 -0.318 
31 21 2000 640 76 690 500 3200 -0.325 
32 20 1700 550 62 600 440 2700 -0.320 
33 20 1700 550 62 600 440 2700 -0.320 
34 20 1800 540 62 590 450 2600 -0.322 
35 20 1700 550 62 590 440 2700 -0.319 
36 20 1700 550 62 590 440 2700 -0.320 
37 20 1700 540 61 590 440 2700 -0.324 
38 20 1800 540 62 590 450 2600 -0.322 
39 22 2200 710 91 760 590 3500 -0.332 
40 22 2200 720 92 760 590 3500 -0.330 



QSAR STUDY ON DIOXINS 
 
 

 
197 

The hypermolecule works like a biological receptor, over which the ligands 
(i.e. dioxins) are superposed/aligned. According to this superposition, binary vectors 
were constructed, with 1 when for a given position of the hypermolecule exists 
an atom in the current molecule, and zero, otherwise. In the so built binary vectors, 
the values 1 are next replaced by the partial charges (given as Supplementary 
data, at request) of ligand atoms, as computed at the HF level of theory. 
 
 
RESULTS AND DISCUSSION 
 

Data Reduction 
 

In this step, the descriptors with variance <10% and intercorrelation > 
0.80 (two descriptors highly correlated bring quite the same information on the 
molecule, one of them being sufficient) were discarded. 

Evaluation of hypermolecule statistically significant positions was made 
by removing columns of data that contributes little to the correlation coefficient. 
From 22 initial positions we selected 16 positions (1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 
14, 16, 18, 19, 20 and 21).Correlation weighting [14] was performed on all the 
statistically significant positions in the hypermolecule: the local descriptors (actually 
the partial charges, computed at HF level of theory), have been multiplied by the 
corresponding correlation coefficients thus resulting new weighted vectors . 

Next, these new descriptors are summed to give a global descriptor, which is a 
linear combination of the local correlating descriptors for the significant positions in 
the hypermolecule [15-17]. 

 
Modeling log P 

 

The 40 structures were divided into two sets: the learning set (25 
molecules) and the test set (15 molecules: 2; 3; 5; 6; 12; 13; 14; 17; 18; 21; 24; 
26; 27; 28 and 37). 

The models were performed on the learning set, the best results being 
listed below and in Table 3. The number of descriptors was limited to three, to 
fulfill the considerations of Topliss and Costello [18]. 

 
(i) Monovariate regression 

 
(ii) Bivariate regression 

 
(iii) Three-variate regression 

 
 

ijCD

log 21.806 0.918P DS  

log 19.822 0.823 0.001P DS Distance    

log 17.628 0.842 0.220 . 0.001P DS Adj Detour      
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Table 3. QSAR models and their statistics 
 

 Descriptors R² Adjust. R² St. Error F 
1 DS 0.908 0.904 0.253 226.639 
2 Distance 0.832 0.825 0.341 114.197 
3 IP min 0.828 0.820 0.345 110.431 
4 IE min 0.826 0.818 0.347 108.872 
5 IE max 0.824 0.816 0.349 107.438 
6 Adjacency 0.817 0.809 0.356 102.717 
7 DS, Adjacency 0.909 0.901 0.257 109.741 
8 DS, Distance 0.909 0.901 0.257 109.879 
9 DS, IE max 0.909 0.900 0.257 109.279 
10 DS, IE min 0.909 0.901 0.257 109.639 
11 DS, HOMO 0.908 0.900 0.257 109.069 
12 Distance, IE min 0.845 0.831 0.335 60.045 
13 DS, Adjacency, Detour 0.912 0.899 0.259 72.272 
14 DS, Detour, IE max 0.911 0.898 0.260 71.706 
15 Distance, IE max, IE min 0.847 0.825 0.340 38.809 
16 Adjacency, Detour, Distance 0.839 0.816 0.350 36.399 
17 Detour, Distance, IE max 0.838 0.815 0.350 36.225 
18 Detour, IE max, IP max 0.8352 0.8117 0.3534 35.4878 

 
External Validation  
 

For the 25moleculesin the learning set, the best model was recorded 
for the trivariate model (DS, Adjacency and Detour), as shown in Table 3, (eq. 13). 
This model was used to predict log P of the molecules in the test set (15 
molecules). Data for this external validation are listed in Table 4 while the plot 
of calculated logP vs. database-values is shown in Figure 2. 
 
Table 4. LogP calc. cf (13) Table 
3 on the molecules of the test set 

 

 
 

Figure 2. The plot log P vs. log Pcalc.  
for the test set (external validation) 

Molecule log P log Pcalc. 
2 8.1 7.4 
3 4.3 5.1 
5 8.4 7.7 
6 7.5 7.8 
12 4.9 5.7 
13 7.2 6.6 
14 6 5.7 
17 6.3 6.7 
18 5.7 6.2 
21 6 6.7 
24 7.8 7.2 
26 6.4 5.9 
27 6.4 6.0 
28 5.6 6.0 
37 6.3 5.8 
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Prediction by Clusters of Similarity 
 

For the molecules in the test set, prediction can be done by means 
of similarity clusters: each of the 15 molecules in the test set is the leader of 
its own cluster, selected by 2D similarity among the 25 structures of the 
learning set (each cluster comprising about 15-20 molecules). The values 
log P were predicted by 15 new equations (the leader being left out) with 
the same descriptors as in eq. 13, Table 3. Data are listed in Table 5 and 
the monovariate correlation:  

; n =15; R2=0.924; s=0.331; F=157.899 

is plotted in Figure 3. 
 

Table 5. Log Pcalc. on molecules 
leading to clusters of similarity 

 
 

 
 

Figure 3. The plot log P vs. log Pcalc.  
by similarity clusters 

Molecule log P log Pcalc.
2 8.1 7.8 
3 4.3 4.6 
5 8.4 7.6 
6 7.5 7.7 
12 4.9 5.2 
13 7.2 6.7 
14 6 5.8 
17 6.3 6.3 
18 5.7 5.9 
21 6 6.3 
24 7.8 7.1 
26 6.4 5.9 
27 6.4 6.2 
28 5.6 5.7 
37 6.3 6 

 

 
 
CONCLUSION 

 
A regression analysis was performed for 40 molecules of dioxins class. 

The study was focused on the correlation weighting of predictor variables 
describing the hypermolecule built up on the data set and prediction by clusters of 
similarity. The results showed a good modeling of log P by Cluj topological 
indices, HOMO energy level and the descriptor summing the contributions of 
the statistically significant positions in the hypermolecule. Validation of the model 
was done by an external set as well as by means of similarity clusters. Similarity 
calculation (in 2D) was done using the program TOPOCLUJ.  

.log 0.763 log 1.392calcP P  
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