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ABSTRACT. A molecular graph can be transformed using map operations, 
one of these, named Capra, being defined by Diudea. In this paper, we 
focus on the structure of Capra-designed planar benzenoid series Can(C6) 
(k≥0) and compute some connectivity indices of this family. A connectivity 
index is a real number related to a molecular graph and is invariant under 
graph automorphism.  
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INTRODUCTION 
 

Let G=(V,E) be a molecular graph with the vertex set V(G) and the 
edge set E(G). |V(G)|=n, |E(G)|=e are the number of vertices and edges. In 
chemical graph theory, the vertices and edges correspond to the atoms and 
bonds, respectively; the number of incident edges in the vertex v is its degree, 
denoted by dv. The vertices u and v are adjacent if there exist an edge e=uv 
between them. A molecular graph is a connected graph, i.e. there exist a path 
between any pair of vertices. 

A variety of topological indices have been defined; a topological 
index is a real number related to the structure of graph, which is invariant 
under graph automorphism.  

In 1975 Randić proposed a structural descriptor called the branching 
index [1-4] that later named the Randić molecular connectivity index (or 
simply Randić index). It is defined as:  
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Recently, a version, called the Sum-connectivity index, was introduced 
by Zhou and Trinajstić [5,6]: 

 
1( )

u vv v u v

X G
d d


  

 
where du and dv are the degrees of the vertices u and v, respectively.  

More recently, Vukicevic and Furtula [7] proposed two topological 
indices, named geometric-arithmetic index and atom-bond connectivity index 
(denoted by GA(G) and ABC(G), respectively), see [7-9]. They are defined 
as follows:  
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Definition 1. Let G be a molecular graph and dv being the degree of 

vertex ( ).v V G  We divide the vertex set V(G) and edge set E(G) of G into 
several partitions, as follow: 
 

, , { ( ) | },i vi i V v V G d i      
, 2 2 , { ( ) | }j v uj j E e uv E G d d j          

2 2 *, , { ( ) | }.k v uk k E e uv E G d d k          

 
Note that { | ( )}vMin d v V G    and { | ( )}.vMax d v V G    

 
 
MAIN RESULTS AND DISCUSSION 

 
In this section, we compute Randić connectivity index, sum- connectivity 

index, geometric-arithmetic index and atom-bond connectivity index of Capra-
designed planar benzenoid series Cak(C6).  

A mapping is a new drawing of an arbitrary planar graph G on the 
plane. Capra map operation was introduced by Diudea [10,11]. This method 
enables one to build a new structure, according to Figure 1 and Definition 2:  
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Figure 1. Capra map operation on the square and hexagonal face, respectively 
 

Definition 2. Let G be a cyclic planar graph. Capra map operation is 
achieved as follows:  

(i) insert two vertices on every edge of G;  
(ii) add pendant vertices to the above inserted ones and  
(iii) connect the pendant vertices in order (-1,+3) around the boundary 

of a face of G. By running these steps for every face/cycle of G, one 
obtains the Capra-transform of G Ca(G), see Figure 1.  
By iterating the Capra-operation on the hexagon (i.e. benzene graph C6) 

and its Ca-transforms, a benzenoid series, as shown in Figures 2 and 3, can 
be designed. We will use the Capra-designed benzene series to calculate 
some connectivity indices (see below).  

 

 
 

Figure 2. The first two graphs: Ca(C6) and Ca2(C6) of the benzenoid family Cak(C6). 
Coloring is according to Definition 1. 
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Figure 3. Graph Ca3(C6) is the third member of Capra-designed planar benzenoid series. 
 
 

Theorem 1. Let G=Cak(C6) k N  be the Capra-designed planar 
benzenoid series. Randić connectivity index is as follows: 
 

1
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Proof. Let G=Cak(C6) (k≥0) be the Capra-designed planar benzenoid 
series. The structure Cak(C6) collects seven times of structure Cak-1(C6) (we 
call "flower" the substructure Cak-1(C6) in the graph Cak(C6)). Therefore, by 
a simple induction on k, the vertex set of Cak(C6) will have 7×|V(Cak(C6))|-

6(2×3k-1+1) members. Because, there are 3k-1+1 and 13k   common vertices 
between seven flowers Cak-1(C6) in Cak(C6), marked by full black color in 
the above figures. Also, by a similar inference, the edge set E(Cak(C6)) has 
7×|E(Cak(C6))|-6(2×3k-1+1) members. Thus, there are 3k-1 and 3k-1 common 
edges, see Figures 2 and 3. Now by solving the recursive sequences, 
nk=|V(Cak(C6))| and ek=|E(Cak(C6))|. Thus the size of vertex set and edge 
set of Capra-designed planar benzenoid series Cak(C6) (k≥0) are equal to: 
 

|V(Cak(C6))|=2×7k+3k+1+1, |E(Cak(C6))|=3(7k+3k). 
 

Now, we can divide V(Cak(C6)) and E(Cak(C6)) to two and three 
partitions, respectively (See Definition 1). According to Figures 2 and 3, we 
see that the number of vertices with degree two of graph Cak(C6) (denoted 
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by ( )
2
kv ) is equal to 

( 1)
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( 1)
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Alternatively, the number of vertices of degree three is 

3 6| |{ ( ( )) | 3}| 2(7| 1),k
k vV v V Ca C d      (denoted by ( )

3
kv ).  

On the other hand, according to the structure of Capra-designed 
planar benzenoid series, G=Cak(C6), 

( ) * ( ) ( )
5 5 6 2 4| | | | .2 2k k ke E E v e     Thus, 

( ) ( ) ( 1)
5 2 22 2k k ke v v    ( ). k4 3  The size of edge set 5E  and *

6E  is: 
( ) 1
5 2(3 3 3 3) ( ).k k ke      k4 3  Thus, it is obvious that: 

 

 ( ) * ( ) ( )
6 6 9 5 4| | | | 3 7 3k k k k ke E E e e       

                                  13 7 3 4 3 3 3k k k k        

                                  3 7 2 3 3k k      

                                  ( ( ) ).  k k 13 7 2 3 1  

Then, by using of size * *
2 3 4 4 5 6 6, , , , , ,V V E E E E E  and *

9 ,E  we can 

compute Randić connectivity index of Capra-designed planar benzenoid 
series G=Cak(C6) as follows:  
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Finally, the Randić index of Cak(C6) is 
 

χ(Cak(C6)) ( ) ( ) .
  

k k 12 7 4 6 1 3 1
2

 

thus completing the proof of Theorem 1. 
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Theorem 2. Sum-connectivity index of Capra-designed planar benzenoid 
series Cak(C6) for integer k is equal to: 
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Proof: By using the results from the above proof, it is immediate that 
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Theorem 3. Geometric-Arithmetic index and Atom-Bond connectivity 

index of Capra-designed planar benzenoid series are equal to (for all k N ) 
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1
6

15 2 8 3 2 4( ( )) 2(7 ) ( )3 ( )
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Proof. Let G=Cak(C6) (k≥1) be Capra-designed planar benzenoid 

series. According to the proof of Theorem 1, we have 
* 1

6 9| | | | 3(7 2(3 ) 1),k kE E      *
5 6| | | | 4(3 )kE E   and *

4 4| | | | 3 3.kE E    Thus, 

we can compute two connectivity topological indices geometric-arithmetic 
index and atom-bond connectivity index of G=Cak(C6) for any k≥1 as 
follows: 
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The geometric-arithmetic index of Cak(C6) is 
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Finally, 
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Therefore, atom-bond connectivity index of Cak(C6) will be 
 

ABC(Cak(C6))= ( ) ( ) ( ).  k k 115 2 8 3 2 42 7 3
2 2

 

 
Here, the proof of Theorem 3 is completed. 
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