SOME CONNECTIVITY INDICES OF CAPRA-DESIGNED PLANAR BENZENOID SERIES *Can(C6)*

MOHAMMAD REZA FARAHANIa , **MIRANDA PETRONELLA VLADb**

ABSTRACT. A molecular graph can be transformed using map operations, one of these, named Capra, being defined by *Diudea*. In this paper, we focus on the structure of *Capra-designed planar benzenoid series Can(C6)* (*k≥0*) and compute some connectivity indices of this family. A connectivity index is a real number related to a molecular graph and is invariant under graph automorphism.

Keywords: Benzenoid, Capra map operation, Connectivity index.

INTRODUCTION

Let *G=(V,E)* be a molecular graph with the vertex set *V(G)* and the edge set *E(G). |V(G)|=n, |E(G)|=e* are the number of vertices and edges. In chemical graph theory, the vertices and edges correspond to the atoms and bonds, respectively; the number of incident edges in the vertex *v* is its degree, denoted by *dv*. The vertices *u* and *v* are adjacent if there exist an edge *e=uv* between them. A molecular graph is a connected graph, i.e. there exist a path between any pair of vertices.

A variety of topological indices have been defined; a topological index is a real number related to the structure of graph, which is invariant under graph automorphism.

In 1975 Randić proposed a structural descriptor called the branching index [1-4] that later named the Randić molecular connectivity index (or simply Randić index). It is defined as:

$$
\chi(G) = \sum_{e = w \in E(G)} \frac{1}{\sqrt{d_u d_v}}
$$

 ^a *Department of Mathematics of Iran University of Science and Technology, (IUST) Narmak, Tehran 16844, Iran, Mr_Farahani@Mathdep.iust.ac.ir*

^b *Dimitrie Cantemir University, Bucharest, Faculty of Economic Sciences, No 56 Teodor Mihali Street, 400591, Cluj Napoca, Romania, mirandapv@yahoo.com*

Recently, a version, called the Sum-connectivity index, was introduced by *Zhou* and *Trinajstić* [5,6]:

$$
X\left(G\right) = \sum_{v_{u}v_{v}} \frac{1}{\sqrt{d_u + d_v}}
$$

where *du* and *dv* are the degrees of the vertices *u* and *v*, respectively.

More recently, *Vukicevic* and *Furtula* [7] proposed two topological indices, named *geometric-arithmetic index* and *atom-bond connectivity index* (denoted by *GA(G)* and *ABC(G),* respectively), see [7-9]. They are defined as follows:

$$
GA(G) = \sum_{e=u v \in E(G)} \frac{2 \times \sqrt{d(u)d(v)}}{d(u) + d(v)}
$$

$$
ABC(G) = \sum_{e=u v \in E(G)} \sqrt{\frac{d(u) + d(v) - 2}{d(u)d(v)}}
$$

Definition 1. Let G be a molecular graph and d_v being the degree of vertex $v \in V(G)$. We divide the vertex set $V(G)$ and edge set $E(G)$ of G into several partitions, as follow:

$$
\forall i, \delta < i < \Delta, V_i = \{v \in V(G) \mid d_v = i\},
$$
\n
$$
\forall j, 2\delta \le j \le 2\Delta, E_j = \{e = uv \in E(G) \mid d_v + d_u = j\}
$$
\n
$$
\forall k, \delta^2 \le k \le \Delta^2, E_k^* = \{e = uv \in E(G) \mid d_v \times d_u = k\}.
$$

Note that $\delta = Min \{d_{v} | v \in V(G)\}$ and $\Delta = Max \{d_{v} | v \in V(G)\}$.

MAIN RESULTS AND DISCUSSION

In this section, we compute Randić connectivity index, sum- connectivity index, geometric-arithmetic index and atom-bond connectivity index of Capradesigned planar benzenoid series *Cak(C6)*.

A mapping is a new drawing of an arbitrary planar graph *G* on the plane. Capra map operation was introduced by *Diudea* [10,11]. This method enables one to build a new structure, according to Figure 1 and Definition 2:

Figure 1. Capra map operation on the square and hexagonal face, respectively

Definition 2. Let *G* be a cyclic planar graph. Capra map operation is achieved as follows:

- (i) insert two vertices on every edge of G;
- (ii) add pendant vertices to the above inserted ones and
- (iii) **c**onnect the pendant vertices in order (-1,+3) around the boundary of a face of G. By running these steps for every face/cycle of *G,* one obtains the Capra-transform of *G Ca(G)*, see Figure 1.

By iterating the Capra-operation on the hexagon (i.e. benzene graph C_6) and its Ca-transforms, a benzenoid series, as shown in Figures 2 and 3, can be designed. We will use the Capra-designed benzene series to calculate some connectivity indices (see below).

Figure 2. The first two graphs: *Ca(C6)* and *Ca2(C6)* of the benzenoid family *Cak(C6)*. Coloring is according to Definition 1.

M. R. FARAHANI, M. P. VLAD

Figure 3. Graph *Ca3*(C6) is the third member of Capra-designed planar benzenoid series.

Theorem 1. Let $G=Ca_k(C_6)$ $k \in \mathbb{N}$ be the Capra-designed planar benzenoid series. Randić connectivity index is as follows:

$$
\chi(Ca_k(C_6)) = \frac{2(7^k) + (4\sqrt{6} - 1)3^{k-1} + 1}{2}
$$

*Proof***.** Let *G=Ca_k*(*C₆*) (*k*≥*0*) be the Capra-designed planar benzenoid series. The structure *Cak(C6)* collects seven times of structure *Cak-1(C6)* (we call "flower" the substructure $Ca_{k-1}(C_6)$ in the graph $Ca_k(C_6)$). Therefore, by a simple induction on *k*, the vertex set of $Ca_k(C₆)$ will have $7 \times |V(Ca_k(C₆))|$ - $6(2\times3^{k-1}+1)$ members. Because, there are $3^{k-1}+1$ and 3^{k-1} common vertices between seven flowers $Ca_{k-1}(C_6)$ in $Ca_k(C_6)$, marked by full black color in the above figures. Also, by a similar inference, the edge set $E(Ca_k(C_6))$ has $7 \times |E(Ca_k(C_6))|$ -6(2×3^{k-1}+1) members. Thus, there are 3^{k-1} and 3^{k-1} common edges, see Figures 2 and 3. Now by solving the recursive sequences, $n_k=|V(Ca_k(C_6))|$ and $e_k=|E(Ca_k(C_6))|$. Thus the size of vertex set and edge set of Capra-designed planar benzenoid series *Cak(C6) (k≥0)* are equal to:

$$
|V(Ca_k(C_6))|=2\times7^{k}+3^{k+1}+1
$$
, $|E(Ca_k(C_6))|=3(7^{k}+3^{k}).$

Now, we can divide $V(Ca_k(C_6))$ and $E(Ca_k(C_6))$ to two and three partitions, respectively (See Definition 1). According to Figures 2 and 3, we see that the number of vertices with degree two of graph *Cak(C6)* (denoted

by
$$
v_2^{(k)}
$$
 is equal to $6(3\left(\frac{v_2^{(k-1)}}{6}\right) - 6$. Therefore, we have $v_2^{(k)} = 3v_2^{(k-1)} - 6$
= $3(3v_2^{(k-2)} - 6) - 6 = ... = 3^k v_2^{(0)} - 6\sum_{i=0}^{k-1} 3^i = 3^{k+1} + 3$ and $e_4^{(k)} = |E_4| = |E_4^*|$
= $v_2^{(k-1)} = 3^k + 3$.

Alternatively, the number of vertices of degree three is $|{V}_3\mathop{{}}\rightleftharpoons{}{V}$ $(Ca_k(C_6))|d_v=3\rbrace|2(7^k-1)$, (denoted by ${v}_3^{(k)}$ $v_3^{(k)}$).

On the other hand, according to the structure of Capra-designed planar benzenoid series, $G = Ca_k(C_6)$, $e_5^{(k)} = |E_5| = |E_6^*| = 2v_2^{(k)} - 2e_4^{(k)}$. Thus, $e_5^{(k)} = 2v_2^{(k)} - 2v_2^{(k-1)} = 4(3^k)$. The size of edge set E_5 and E_6^* is: $e_5^{(k)} = 2(3^{k+1} + 3 - 3^k - 3) = 4(3^k)$. Thus, it is obvious that:

$$
e_6^{(k)} = |E_6| = |E_9^*| = 3(7^k + 3^k) - e_5^{(k)} - e_4^{(k)}
$$

= 3×7^k + 3^{k+1} - 4×3^k - 3^k - 3
= 3×7^k - 2×3^k - 3
= 3(7^k - 2(3^{k-1}) - 1).

Then, by using of size ${V}_2$, ${V}_3$, E_4 , E_4^* , E_5 , E_6^* , E_6 and E_9^* , we can compute Randić connectivity index of Capra-designed planar benzenoid series $G=Ca_k(C_6)$ as follows:

$$
\chi(Ca_k(C_6)) = \sum_{uv \in E(Ca_k(C_6))} \frac{1}{\sqrt{d(u)d(v)}} \n= \sum_{uv \in E_9^*} \frac{1}{\sqrt{d(u)d(v)}} + \sum_{uv \in E_6^*} \frac{1}{\sqrt{d(u)d(v)}} + \sum_{uv \in E_4^*} \frac{1}{\sqrt{d(u)d(v)}} \n= \frac{|E_9^*|}{\sqrt{9}} + \frac{|E_6^*|}{\sqrt{6}} + \frac{|E_4^*|}{\sqrt{4}} \n= \frac{3(7^k - 2(3^{k-1}) - 1)}{\sqrt{9}} + \frac{4(3^k)}{\sqrt{6}} + \frac{3^k + 3}{\sqrt{4}}.
$$

Finally, the Randić index of *Cak(C6)* is

$$
\chi \big(C a_k \big(C_6\big)\big) = \frac{2(7^k) + (4\sqrt{6} - 1)3^{k-1} + 1}{2}.
$$

thus completing the proof of Theorem 1.

Theorem 2. Sum-connectivity index of Capra-designed planar benzenoid series $Ca_k(C_6)$ for integer *k* is equal to:

$$
X\left(\mathbf{Ca}_{k}\left(\mathbf{C}_{6}\right)\right)=\frac{3(3^{k-1}+1)+\sqrt{6}(7^{k}-1)}{2}+3^{k-1}\left(\frac{12\sqrt{5}-5\sqrt{6}}{5}\right).
$$

Proof: By using the results from the above proof, it is immediate that

$$
X (Cak (C6)) = \sum_{e = uv \in E(G)} \frac{1}{\sqrt{d_u + d_v}}
$$

=
$$
\sum_{e = uv \in E_4} \frac{1}{\sqrt{d_u + d_v}} + \sum_{e = uv \in E_5} \frac{1}{\sqrt{d_u + d_v}} + \sum_{e = uv \in E_6} \frac{1}{\sqrt{d_u + d_v}}
$$

=
$$
\frac{|E_4|}{\sqrt{4}} + \frac{|E_5|}{\sqrt{5}} + \frac{|E_6|}{\sqrt{6}}
$$

=
$$
\frac{3^k + 3}{\sqrt{4}} + \frac{4(3^k)}{\sqrt{5}} + \frac{3(7^k - 2(3^{k-1}) - 1)}{\sqrt{6}}.
$$
Thus
$$
Y (Cak (Ck)) = \frac{3(3^{k-1} + 1) + \sqrt{6}(7^k - 1)}{k} + \frac{3^{k-1}}{2^{k-1}} = \frac{3^{k-1} + 1}{2}
$$

Thus
$$
X(\text{Ca}_{k}(\text{C}_{6})) = \frac{3(3^{k-1}+1) + \sqrt{6}(7^{k}-1)}{2} + 3^{k-1} \left(\frac{12\sqrt{5}-5\sqrt{6}}{5}\right)
$$
.

Theorem 3. Geometric-Arithmetic index and Atom-Bond connectivity index of Capra-designed planar benzenoid series are equal to (for all $k \in N$)

$$
GA(Ca_k(C_6)) = 3(7^k) + \left(\frac{8\sqrt{6}}{5} - 1\right)3^k
$$

$$
ABC(Ca_k(C_6)) = 2(7^k) + \left(\frac{15\sqrt{2} - 8}{2}\right)3^{k-1} + \left(\frac{3\sqrt{2} - 4}{2}\right)
$$

Proof. Let *G=Cak(C6) (k≥1)* be Capra-designed planar benzenoid series. According to the proof of Theorem 1, we have $|E_6| \neq E_9^*| = 3(7^k - 2(3^{k-1}) - 1), \ |E_5| \neq E_6^*| = 4(3^k) \text{ and } |E_4| \neq |E_4^*| = 3^k + 3. \text{ Thus,}$ we can compute two connectivity topological indices geometric-arithmetic index and atom-bond connectivity index of $G=Ca_k(C_6)$ for any $k\geq 1$ as follows:

$$
GA(Ca_{k}(C_{6})) = \sum_{uv \in E(Ca_{k}(C_{6}))} \frac{2\sqrt{d(u)d(v)}}{d(u) + d(v)}
$$

= $\sum_{e=uv \in E_{4}} \frac{2\sqrt{4}}{4} + \sum_{e=uv \in E_{5}} \frac{2\sqrt{6}}{5} + \sum_{e=uv \in E_{6}} \frac{2\sqrt{9}}{6}$
= $e_{6}^{(k)} \frac{6}{6} + e_{5}^{(k)} \frac{2\sqrt{6}}{5} + e_{4}^{(k)} \frac{4}{4}$
= $3(7^{k}) + \left(\frac{8\sqrt{6}}{5} - 1\right)3^{k}$

The geometric-arithmetic index of $Ca_{k}(C_{6})$ is

$$
GA(Ca_{k}(C_{6}))=3(7^{k})+\left(\frac{8\sqrt{6}}{5}-1\right)3^{k}.
$$

Finally,

$$
ABC\left(Ca_{k}\left(C_{6}\right)\right) = \sum_{uv \in E}\sum_{\left(Ca_{k}\left(C_{6}\right)\right)}\sqrt{\frac{d(u) + d(v) - 2}{d(u)d(v)}}
$$

=
$$
\sum_{uv \in E_{5}^{+}}\frac{1}{\sqrt{d(u)d(v)}} + \sum_{uv \in E_{6}^{+}}\frac{1}{\sqrt{d(u)d(v)}} + \sum_{uv \in E_{4}^{+}}\frac{1}{\sqrt{d(u)d(v)}}
$$

=
$$
e_{6}^{(k)}\sqrt{\frac{6-2}{9}} + e_{5}^{(k)}\sqrt{\frac{5-2}{6}} + e_{4}^{(k)}\sqrt{\frac{4-2}{4}}
$$

=
$$
3(7^{k} - 2(3^{k-1}) - 1)\frac{2}{3} + 4(3^{k})\frac{\sqrt{2}}{2} + (3^{k} + 3)\frac{\sqrt{2}}{2}.
$$

Therefore, atom-bond connectivity index of *Cak(C6)* will be

$$
ABC(Ca_k(C_6))=2(7^k)+(\frac{15\sqrt{2}-8}{2})3^{k-1}+(\frac{3\sqrt{2}-4}{2}).
$$

Here, the proof of Theorem 3 is completed.

ACKNOWLEDGMENTS

The authors are thankful to Professor Mircea V. Diudea, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University for his precious support and suggestions.

REFERENCES

- 1. M. Randić, On characterization of molecular branching, *J. Amer. Chem. Soc*., **1975**, *97,* 6609.
- 2. M. Ghorbani and M. Ghazi, *Digest. J. Nanomater. Bios*., **2010**, *5(4),* 1107.
- 3. M. Ghorbani and M. Ghazi, *Digest. J. Nanomater. Bios*., **2010**, *5(4),* 837.
- 4. J. Rada, O. Araujo, and I. Gutman, *Croat. Chem. Acta*, **2001**, *74,* 225.
- 5. B. Zhou and N. Trinajstić, On a novel connectivity index, *J. Math. Chem.,* **2009**, *46*, 1252.
- 6. B. Zhou and N. Trinajstić, On general sum-connectivity index, *J. Math. Chem.,* **2010**, *47*, 210.
- 7. D. Vukicevic and B. Furtula, *J. Math. Chem*., **2009**, *46,* 1369.
- 8. L. Xiao, S. Chen, Z. Guo and Q. Chen, *Int. J. Contemp. Math. Sci.,* **2010**, *5(45),* 2225.
- 9. Y. Yuan, B. Zhou and N. *Trinajstić, J. Math. Chem.,* **2010**, *47,* 833.
- 10. M.V. Diudea, Capra-a leapfrog related operation on maps, *Studia UBB Chemia*, **2003**, *48* (2), 3.
- 11. M.V. Diudea, Nanoporous carbon allotropes by septupling map operations. *J. Chem. Inf. Model*, **2005**, *45,* 1002.