SOME CONNECTIVITY INDICES OF CAPRA-DESIGNED PLANAR BENZENOID SERIES *Can(C6)*

MOHAMMAD REZA FARAHANI^a, MIRANDA PETRONELLA VLAD^b

ABSTRACT. A molecular graph can be transformed using map operations, one of these, named Capra, being defined by *Diudea*. In this paper, we focus on the structure of *Capra-designed planar benzenoid series* $Ca_n(C_6)$ ($k \ge 0$) and compute some connectivity indices of this family. A connectivity index is a real number related to a molecular graph and is invariant under graph automorphism.

Keywords: Benzenoid, Capra map operation, Connectivity index.

INTRODUCTION

Let G=(V,E) be a molecular graph with the vertex set V(G) and the edge set E(G). |V(G)|=n, |E(G)|=e are the number of vertices and edges. In chemical graph theory, the vertices and edges correspond to the atoms and bonds, respectively; the number of incident edges in the vertex v is its degree, denoted by d_v . The vertices u and v are adjacent if there exist an edge e=uv between them. A molecular graph is a connected graph, i.e. there exist a path between any pair of vertices.

A variety of topological indices have been defined; a topological index is a real number related to the structure of graph, which is invariant under graph automorphism.

In 1975 Randić proposed a structural descriptor called the branching index [1-4] that later named the Randić molecular connectivity index (or simply Randić index). It is defined as:

$$\chi(G) = \sum_{e=uv \in E(G)} \frac{1}{\sqrt{d_u d_v}}$$

^a Department of Mathematics of Iran University of Science and Technology, (IUST) Narmak, Tehran 16844, Iran, Mr_Farahani@Mathdep.iust.ac.ir

^b Dimitrie Cantemir University, Bucharest, Faculty of Economic Sciences, No 56 Teodor Mihali Street, 400591, Cluj Napoca, Romania, mirandapv@yahoo.com

Recently, a version, called the Sum-connectivity index, was introduced by *Zhou* and *Trinajstić* [5,6]:

$$X(G) = \sum_{v_u v_v} \frac{1}{\sqrt{d_u + d_v}}$$

where d_u and d_v are the degrees of the vertices u and v, respectively.

More recently, *Vukicevic* and *Furtula* [7] proposed two topological indices, named *geometric-arithmetic index* and *atom-bond connectivity index* (denoted by GA(G) and ABC(G), respectively), see [7-9]. They are defined as follows:

$$GA(G) = \sum_{e=uv \in E(G)} \frac{2 \times \sqrt{d(u)d(v)}}{d(u) + d(v)}$$
$$ABC(G) = \sum_{e=uv \in E(G)} \sqrt{\frac{d(u) + d(v) - 2}{d(u)d(v)}}$$

Definition 1. Let *G* be a molecular graph and d_v being the degree of vertex $v \in V(G)$. We divide the vertex set V(G) and edge set E(G) of *G* into several partitions, as follow:

$$\forall i, \delta < i < \Delta, V_i = \{v \in V(G) | d_v = i\},$$

$$\forall j, 2\delta \le j \le 2\Delta, E_j = \{e = uv \in E(G) | d_v + d_u = j\},$$

$$\forall k, \delta^2 \le k \le \Delta^2, E_k^* = \{e = uv \in E(G) | d_v \times d_u = k\}.$$

Note that $\delta = Min\{d_v | v \in V(G)\}$ and $\Delta = Max\{d_v | v \in V(G)\}$.

MAIN RESULTS AND DISCUSSION

In this section, we compute Randić connectivity index, sum- connectivity index, geometric-arithmetic index and atom-bond connectivity index of Capradesigned planar benzenoid series $Ca_k(C_6)$.

A mapping is a new drawing of an arbitrary planar graph *G* on the plane. Capra map operation was introduced by *Diudea* [10,11]. This method enables one to build a new structure, according to Figure 1 and Definition 2:

Figure 1. Capra map operation on the square and hexagonal face, respectively

Definition 2. Let *G* be a cyclic planar graph. Capra map operation is achieved as follows:

- (i) insert two vertices on every edge of G;
- (ii) add pendant vertices to the above inserted ones and
- (iii) connect the pendant vertices in order (-1,+3) around the boundary of a face of G. By running these steps for every face/cycle of G, one obtains the Capra-transform of G Ca(G), see Figure 1.

By iterating the Capra-operation on the hexagon (i.e. benzene graph C_6) and its Ca-transforms, a benzenoid series, as shown in Figures 2 and 3, can be designed. We will use the Capra-designed benzene series to calculate some connectivity indices (see below).

Figure 2. The first two graphs: $Ca(C_6)$ and $Ca_2(C_6)$ of the benzenoid family $Ca_k(C_6)$. Coloring is according to Definition 1.

M. R. FARAHANI, M. P. VLAD

Figure 3. Graph Ca₃(C₆) is the third member of Capra-designed planar benzenoid series.

Theorem 1. Let $G=Ca_k(C_6)$ $k \in N$ be the Capra-designed planar benzenoid series. Randić connectivity index is as follows:

$$\chi(Ca_k(C_6)) = \frac{2(7^k) + (4\sqrt{6} - 1)3^{k-1} + 1}{2}$$

Proof. Let $G=Ca_k(C_6)$ ($k\geq 0$) be the Capra-designed planar benzenoid series. The structure $Ca_k(C_6)$ collects seven times of structure $Ca_{k-1}(C_6)$ (we call "flower" the substructure $Ca_{k-1}(C_6)$ in the graph $Ca_k(C_6)$). Therefore, by a simple induction on k, the vertex set of $Ca_k(C_6)$ will have $7 \times |V(Ca_k(C_6))|$ - $6(2 \times 3^{k-1}+1)$ members. Because, there are $3^{k-1}+1$ and 3^{k-1} common vertices between seven flowers $Ca_{k-1}(C_6)$ in $Ca_k(C_6)$, marked by full black color in the above figures. Also, by a similar inference, the edge set $E(Ca_k(C_6))$ has $7 \times |E(Ca_k(C_6))| - 6(2 \times 3^{k-1}+1)$ members. Thus, there are 3^{k-1} and 3^{k-1} common edges, see Figures 2 and 3. Now by solving the recursive sequences, $n_k = |V(Ca_k(C_6))|$ and $e_k = |E(Ca_k(C_6))|$. Thus the size of vertex set and edge set of Capra-designed planar benzenoid series $Ca_k(C_6)$ ($k\geq 0$) are equal to:

$$|V(Ca_k(C_6))|=2\times 7^k+3^{k+1}+1, |E(Ca_k(C_6))|=3(7^k+3^k).$$

Now, we can divide $V(Ca_k(C_6))$ and $E(Ca_k(C_6))$ to two and three partitions, respectively (See Definition 1). According to Figures 2 and 3, we see that the number of vertices with degree two of graph $Ca_k(C_6)$ (denoted

by
$$v_2^{(k)}$$
) is equal to $6(3\left(\frac{v_2^{(k-1)}}{6}\right)) - 6$. Therefore, we have $v_2^{(k)} = 3v_2^{(k-1)} - 6$
= $3(3v_2^{(k-2)} - 6) - 6 = ... = 3^k v_2^{(0)} - 6\sum_{i=0}^{k-1} 3^i = 3^{k+1} + 3$ and $e_4^{(k)} = |E_4| = |E_4^*| = v_2^{(k-1)} = 3^k + 3$.

Alternatively, the number of vertices of degree three is $|V_3| = |\{v \in V (Ca_k(C_6)) | d_v = 3\} |= 2(7^k - 1)$, (denoted by $v_3^{(k)}$).

On the other hand, according to the structure of Capra-designed planar benzenoid series, $G=Ca_k(C_6)$, $e_5^{(k)} = |E_5| = |E_6^*| = 2v_2^{(k)} - 2e_4^{(k)}$. Thus, $e_5^{(k)} = 2v_2^{(k)} - 2v_2^{(k-1)} = 4(3^k)$. The size of edge set E_5 and E_6^* is: $e_5^{(k)} = 2(3^{k+1} + 3 - 3^k - 3) = 4(3^k)$. Thus, it is obvious that:

$$e_{6}^{(k)} = |E_{6}| = |E_{9}^{*}| = 3(7^{k} + 3^{k}) - e_{5}^{(k)} - e_{4}^{(k)}$$

= 3×7^k + 3^{k+1} - 4×3^k - 3^k - 3
= 3×7^k - 2×3^k - 3
= 3(7^k - 2(3^{k-1}) - 1).

Then, by using of size $V_2, V_3, E_4, E_4^*, E_5, E_6^*, E_6$ and E_9^* , we can compute Randić connectivity index of Capra-designed planar benzenoid series $G=Ca_k(C_6)$ as follows:

$$\begin{split} \chi(Ca_k(C_6)) &= \sum_{uv \in E (Ca_k(C_6))} \frac{1}{\sqrt{d(u)d(v)}} \\ &= \sum_{uv \in E_9^*} \frac{1}{\sqrt{d(u)d(v)}} + \sum_{uv \in E_6^*} \frac{1}{\sqrt{d(u)d(v)}} + \sum_{uv \in E_4^*} \frac{1}{\sqrt{d(u)d(v)}} \\ &= \frac{|E_9^*|}{\sqrt{9}} + \frac{|E_6^*|}{\sqrt{6}} + \frac{|E_4^*|}{\sqrt{4}} \\ &= \frac{3(7^k - 2(3^{k-1}) - 1)}{\sqrt{9}} + \frac{4(3^k)}{\sqrt{6}} + \frac{3^k + 3}{\sqrt{4}}. \end{split}$$

Finally, the Randić index of $Ca_k(C_6)$ is

$$\chi(Ca_k(C_6)) = \frac{2(7^k) + (4\sqrt{6} - 1)3^{k-1} + 1}{2}.$$

thus completing the proof of Theorem 1.

Theorem 2. Sum-connectivity index of Capra-designed planar benzenoid series $Ca_k(C_6)$ for integer *k* is equal to:

$$X(\mathbf{Ca}_{k}(\mathbf{C}_{6})) = \frac{3(3^{k-1}+1) + \sqrt{6}(7^{k}-1)}{2} + 3^{k-1} \left(\frac{12\sqrt{5} - 5\sqrt{6}}{5}\right).$$

Proof: By using the results from the above proof, it is immediate that

$$X(Ca_{k}(C_{6})) = \sum_{e=uv \in E(G)} \frac{1}{\sqrt{d_{u} + d_{v}}}$$

$$= \sum_{e=uv \in E_{4}} \frac{1}{\sqrt{d_{u} + d_{v}}} + \sum_{e=uv \in E_{5}} \frac{1}{\sqrt{d_{u} + d_{v}}} + \sum_{e=uv \in E_{6}} \frac{1}{\sqrt{d_{u} + d_{v}}}$$

$$= \frac{|E_{4}|}{\sqrt{4}} + \frac{|E_{5}|}{\sqrt{5}} + \frac{|E_{6}|}{\sqrt{6}}$$

$$= \frac{3^{k} + 3}{\sqrt{4}} + \frac{4(3^{k})}{\sqrt{5}} + \frac{3(7^{k} - 2(3^{k-1}) - 1)}{\sqrt{6}}.$$

Thus $X(Ca_{k}(C_{6})) = \frac{3(3^{k-1} + 1) + \sqrt{6}(7^{k} - 1)}{2} + 3^{k-1} \left(\frac{12\sqrt{5} - 5\sqrt{6}}{5}\right)$

Theorem 3. Geometric-Arithmetic index and Atom-Bond connectivity index of Capra-designed planar benzenoid series are equal to (for all $k \in N$)

$$GA(Ca_k(C_6)) = 3(7^k) + \left(\frac{8\sqrt{6}}{5} - 1\right)3^k$$
$$ABC(Ca_k(C_6)) = 2(7^k) + \left(\frac{15\sqrt{2} - 8}{2}\right)3^{k-1} + \left(\frac{3\sqrt{2} - 4}{2}\right)$$

Proof. Let $G=Ca_k(C_6)$ $(k\geq 1)$ be Capra-designed planar benzenoid series. According to the proof of Theorem 1, we have $|E_6| = |E_9^*| = 3(7^k - 2(3^{k-1}) - 1)$, $|E_5| = |E_6^*| = 4(3^k)$ and $|E_4| = |E_4^*| = 3^k + 3$. Thus, we can compute two connectivity topological indices geometric-arithmetic index and atom-bond connectivity index of $G=Ca_k(C_6)$ for any $k\geq 1$ as follows:

$$GA(Ca_{k}(C_{6})) = \sum_{uv \in E(Ca_{k}(C_{6}))} \frac{2\sqrt{d(u)d(v)}}{d(u) + d(v)}$$

= $\sum_{e=uv \in E_{4}} \frac{2\sqrt{4}}{4} + \sum_{e=uv \in E_{5}} \frac{2\sqrt{6}}{5} + \sum_{e=uv \in E_{6}} \frac{2\sqrt{9}}{6}$
= $e_{6}^{(k)} \frac{6}{6} + e_{5}^{(k)} \frac{2\sqrt{6}}{5} + e_{4}^{(k)} \frac{4}{4}$
= $3(7^{k}) + \left(\frac{8\sqrt{6}}{5} - 1\right)3^{k}$

The geometric-arithmetic index of $Ca_k(C_6)$ is

$$GA(Ca_k(C_6)) = 3(7^k) + \left(\frac{8\sqrt{6}}{5} - 1\right)3^k$$

Finally,

$$ABC(Ca_{k}(C_{6})) = \sum_{uv \in E(Ca_{k}(C_{6}))} \sqrt{\frac{d(u) + d(v) - 2}{d(u)d(v)}}$$

$$= \sum_{uv \in E_{9}^{*}} \frac{1}{\sqrt{d(u)d(v)}} + \sum_{uv \in E_{6}^{*}} \frac{1}{\sqrt{d(u)d(v)}} + \sum_{uv \in E_{4}^{*}} \frac{1}{\sqrt{d(u)d(v)}}$$

$$= e_{6}^{(k)} \sqrt{\frac{6-2}{9}} + e_{5}^{(k)} \sqrt{\frac{5-2}{6}} + e_{4}^{(k)} \sqrt{\frac{4-2}{4}}$$

$$= 3(7^{k} - 2(3^{k-1}) - 1)\frac{2}{3} + 4(3^{k})\frac{\sqrt{2}}{2} + (3^{k} + 3)\frac{\sqrt{2}}{2}.$$

Therefore, atom-bond connectivity index of $Ca_k(C_6)$ will be

$$ABC(Ca_{k}(C_{6}))=2(7^{k})+(\frac{15\sqrt{2}-8}{2})3^{k-1}+(\frac{3\sqrt{2}-4}{2}).$$

Here, the proof of Theorem 3 is completed.

ACKNOWLEDGMENTS

The authors are thankful to Professor Mircea V. Diudea, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University for his precious support and suggestions.

REFERENCES

- 1.M. Randić, On characterization of molecular branching, *J. Amer. Chem. Soc.*, **1975**, 97, 6609.
- 2.M. Ghorbani and M. Ghazi, Digest. J. Nanomater. Bios., 2010, 5(4), 1107.
- 3.M. Ghorbani and M. Ghazi, Digest. J. Nanomater. Bios., 2010, 5(4), 837.
- 4.J. Rada, O. Araujo, and I. Gutman, Croat. Chem. Acta, 2001, 74, 225.
- 5.B. Zhou and N. Trinajstić, On a novel connectivity index, *J. Math. Chem.*, **2009**, 46, 1252.
- 6.B. Zhou and N. Trinajstić, On general sum-connectivity index, *J. Math. Chem.*, **2010**, *47*, 210.
- 7.D. Vukicevic and B. Furtula, J. Math. Chem., 2009, 46, 1369.
- 8.L. Xiao, S. Chen, Z. Guo and Q. Chen, Int. J. Contemp. Math. Sci., 2010, 5(45), 2225.
- 9.Y. Yuan, B. Zhou and N. Trinajstić, J. Math. Chem., 2010, 47, 833.
- 10.M.V. Diudea, Capra-a leapfrog related operation on maps, *Studia UBB Chemia*, **2003**, *48* (2), 3.
- 11.M.V. Diudea, Nanoporous carbon allotropes by septupling map operations. *J. Chem. Inf. Model*, **2005**, *45*, 1002.