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ABSTRACT. The generalized hierarchical product of graphs was introduced 
very recently by L. Barriére et al. In this paper, revised Szeged and new version 
of Zagreb indices of generalized hierarchical product of two connected graphs 
are obtained. Using the results obtained here, some known results are deduced 
as corollaries. Finally, we obtain the Sz*, M*

1 and M*
2 indices of the zig-zag polyhex 

nanotube TUHC6[2n, 2], linear phenylene Fn, hexagonal chain Ln and truncated 
cube as a consequence of our results. 
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INTRODUCTION 
 
 Throughout this paper all graphs considered are finite, simple and 
connected. The distance d(u,v) between the vertices u and v of a graph G is 
equal to the length of a shortest path that connects u and v. Suppose G is a 
graph with vertex and edge sets V = V(G) and E = E(G), respectively. Suppose 
e = uv E(G). The set of vertices of G whose distance to the vertex u is smaller 

than the distance to the vertex v is denoted by (e)NGu . In addition, let (e)NG0  
denote the set of vertices with equal distances to u and v. The Szeged and 
revised Szeged indices of the graph G are defined as: 
 

Sz(G) = ∑e=uvE(G) | (e)NGu || (e)NGv | [1, 2, 3], 

Sz*(G) = ∑e=uvE(G) ( | (e)NG
u | + 2

(e)NG0 )( | (e)NG
v | + 2

(e)NG0 ) [4, 5, 6]. 
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The Zagreb indices have been introduced by Gutman and Trinajstic as 
M1(G) = ∑uV(G) (degG(u))2 and M2(G) = ∑uvE(G) degG(u)degG(v), where degG(u) 
denotes the degree of vertex u [7, 8]. In [9], a new version of Zagreb indices 

were defined as M*
1 (G)=∑uvE(G)[G(u)+G(v)], M **

1 (G)= ∑uV(G) (G(u))2 and M*
2

(G)=∑uvE(G) G(u)G(v), where G(u) is the largest distance between u and any 
other vertex v of G. The total connectivity index (G) of a graph G is defined as 
(G)= ∑uV(G) G(u), see [10].  

A graph G with a specified vertex subset U  V(G) is denoted by G(U). 
Suppose G and H are graphs and U  V(G). The generalized hierarchical 
product, denoted by G(U)  H, is the graph with vertex set V(G)  V(H) and two 
vertices (g, h) and (g′, h′) are adjacent if and only if g = g′ U and hh′  E(H) or, 
gg′  E(G) and h = h′, see Figure 1. This graph operation introduced recently by 
Barriere et al. [11, 12] and found some applications in computer science. The 
Cartesian product, G  H, of graphs G and H has the vertex set V(GH) =V(G)  
V(H) and (u, x)(v, y) is an edge of G  H  if  u = v  and  xy E(H) or, uv  E(G) 
and x = y [13, 14]. 

We denote by Pn and Cn the path and cycle with n vertices, respectively. 
A bipartite graph is a graph whose vertices can be partitioned into two disjoint 
subsets U1 and U2 such that every edge connects a vertex in U1 to one in U2; 
that is, U1 and U2 are independent sets. Our other notations are standard and 
taken mainly from the standard books of graph theory.  
 
 
RESULTS AND DISCUSSION 
 

We first introduce some notations. Let G = (V, E) be a graph and U  V. 
In G(U), an u–v path through U is an u–v path in G containing some vertex w  U 
(vertex w could be the vertex u or v). Let dG(U)(u,v) denote the length of a shortest 
u –v path through U in G. Notice that, if one of the vertices u and v belong to U, 
then dG(U)(u,v) = dG(u,v). Furthermore, let ɛG(U)(u) = max{ dG(U)(v, u) | v  V(G(U)}, 

then ζ(G(U)), M*
1 (G(U)), M*

2 (G(U)) and M **
1 (G(U)) can be defined as follows: 

ζ(G(U))= 
 ))((

)()(
UGVu

uε UG , M*
1 (G(U))= )]()([ )(

))((
)( vu UG

UGEuv
UG  


, 

M **
1 (G(U))= 

 ))((
)( )()(
2

UG
uUGε

Vu
 and 
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M*
2 (G(U))= )()(

))((
)()( vu

UGEuv
UGUG


 . 

For an edge e = ab of G(U), (e )N G (U )

a denotes the set of vertices closer 

to a than b through U in G and (e )N G (U )

0  denotes the set of equidistant vertices 
of e through U in G(U), i.e. 

(e)N G(U)a  = { u   V(G(U)) | dG(U)(u,a) < dG(U)(u,b)}, 

(e)N G(U)0  = { u   V(G(U)) | dG(U)(u,a) = dG(U)(u,b)}. 

Then Sz
*
(G(U)), Sz

**
 (G(U)) and Sz

***
(G(U)) can be defined as follows: 

Sz*(G(U))= )2
|(e )N||(e )N) (|2

|(e )N||(e )N(|
G (U )

0G (U )

v
E (G )uve

G (U )
0G (U )

u 


, 

Sz**(G(U))= )|(e )N||(e )N||(e )N||(e )N|( G
u

G (U )

v
E (G (U ) )uve

G
v

G (U )

u 


2
1 , 

Sz**(G(U))= )|(e )N||(e )N||(e )N||(e )N|( G
v

G (U )

v
E (G (U ) )uve

G
u

G (U )

u 


2
1 . 

Therefore, it is clear that if U = V(G), then Sz
**
(G) = Sz(G).  

 

 
 

Figure 1. Hexagonal chain Ln = P2n+1(U)  P2, where U= {v1, v3, v5, …, v2n+1}. 
 

Lemma 1. (See [12]). Let G and H be graphs with UV(G).Then we have 

(a) If U = V(G), then the generalized hierarchical product G(U)  H is 
the Cartesian product of G and H , 

(b) |V(G(U)  H)| = |V(G)||V(H)|, |E(G(U)  H)| = |E(G)||V(H)| + |E(H)||U|, 
(c) G(U)  H is connected if and only if G and H are connected, 
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(d) d ΠHG (U ) ((g,h), (g′,h′ )) = 







.hhgg,d
,hhhh,dgg,d
''

G

''
H

'
UG

if)(
if)()()(  

Theorem 2. Let G and H be two connected graphs and let U be a 
nonempty subset of V(G). Then 
 

Sz
*
(G(U)H ) = |V(H)|(|V(H)| – 1)

2
Sz

*
(G(U)) + |V(H)|Sz

*
(G) 

+ |V(H)|(|V(H)| – 1)  ))(())(( UGSzUGSz *****   

+
2
1 |E(G)||V(G)|

2
|V(H)|(|V(H)| – 1) + |U||V(G)|

2
 Sz

*
(H). 

 

Proof. Let G and H be two connected graphs and let U be a nonempty 
subset of V(G). For our convenience, we partition the edge set of G(U)  H 
into two sets, 
 

E1 = {(g,h)(g′,h′) | gg′ E(G) and h = h′   V(H)}, 
E2 = {(g,h)(g′,h′) | hh′ E(H) and g = g′   U}. 

 

Let e = (g,h)(g′,h)   E1. Suppose (x,y)   V(G(U)  H), thus by Lemma 1, 

(x,y)   N HG (U )

h )(g,
 (e), if y = h and x  NG

g (gg′) or, y  h and x  N )(UG
g (gg′). 

Therefore, we have 
 

|N HG (U )

h )(g,
 (e)| = (|V(H)| – 1) |NG (U )

g (gg′)| + |NG
g (gg′)| , 

|N HG (U )

h ),'(g
  (e)| = (|V(H)| – 1) |NG (U )

'g
(gg′)| + |NG

'g
(gg′)| , 

|N HG (U )

0
 (e)| = (|V(H)| – 1) |NG (U )

0 (gg′)| + |NG
0 (gg′)| . 

 

Thus, the summation of [|N HG (U )

h )(g,
 (e)| + 2

1 |N HUG )(
0 (e)|]  [|N HUG

hg
)(
),( '' (e)| 

+ 2
1 |N HUG )(

0 (e)|] over all edges of E1, is equal to: 
 

Sz1 = |V(H)|(|V(H)| – 1)
2

Sz*(G(U)) + |V(H)|Sz*(G) 

+|V(H)|(|V(H)| – 1)  ))(())(( UGSzUGSz *****   

+
2
1 |E(G)||V(G)|

2
|V(H)|(|V(H)| – 1). 

 

On the other hand, assume that e = (g,h)(g,h′)E2 and let (x,y)V(G(U) 
 H ), thus by Lemma 1, (x,y)N HG (U )

h )(g,
 (e) if  yN H

h (hh′). Then 
 

|N HG (U )

h )(g,
 (e)| = |V(G)|| N H

h (hh′)|,  |N HG (U )
)

'h(g,
 (e)| = |V(G)|| N H

'h
(hh′)|, 
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|N HH (U )

0
 (e)| = |V(G)|| N H

0 (hh′)|. 
 

Therefore, the summation of  

[|N H)(
)(

UG
hg, (e)| + 2

1  |N H)(UG
0 (e)|] [|N HUG

h,g ''
)(
)( (e)| + 2

1 |N HUG
0

)( (e)|]  

over all edges of E2, is equal to: 
 

Sz2 = |U||V(G)|2Sz*(H). 
 

By summation of Sz1 and Sz2, the result can be proved.                  
 

By definition of Sz*, Sz** and Sz***, we have 
 

2Sz*(G) – Sz**(G) + Sz***(G) = 
2
1 |E(G)||V(G)|2. 

 

In the above theorem, if we set U = V(G), then by the above equality, 
we obtain the following corollary. 
 

Corollary 3. Let G and H be two connected graphs. Then 
 

Sz*(GH) = |V(H)|3Sz*(G) + |V(G)|3Sz*(H).                         
 

Theorem 4. Let G and H be two connected graphs and let U be a 
nonempty subset of V(G). Then 
 

M*
1 (G(U)  H) = |V(H)|M*

1 (G(U)) + |U|M*
1 (H) + 2|E(G)|ζ(H) 

+2|E(H)| 
Uu

G (U )(u )ε . 

 

Proof. Let G and H be two connected graphs and let U be a nonempty 
subset of V(G). For our convenience, we partition the edge set of G(U)  H into 
two sets, 
 

E1 = {(g,h)(g′,h′) | gg′  E(G) and h = h′  V(H)}, 
 

E2 = {(g,h)(g′,h′) | hh′  E(H) and g = g′  U}. 
 

Suppose (x,y)   V(G(U)  H), then by Lemma 1, 
 

HG (U )ε  ((x,y)) = (x )εG (U )  + (y )ε H . 
 

Therefore, 
 

M *
1 (G(U)H)= 


 

))(())((
)() ))](())(([

HUGE,hgg,h

''
HUGHG (U

''
h,gεhg,ε  
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


 
1

' Eh,ghg,

'
HUGHUG h,ghg,

))((
)()( ))](())(([ εε  




 
2

' Ehg,hg,

'
HUGHUG hg,hg,

))((
)()( ))](())(([ εε  

     
 


)( )(

)()( )()()(
HVh GEgg

'
UGHUG

'
gh2g εεε  

  
 


Ug E (H )hh

'
HHG (U )

'

)(hε(h )ε(g )2ε =|V(H)|M *
1 (G(U)) + |U|M *

1 (H) + 2|E(G)|ζ(H) + 2|E(H)|
Uu

UG u )()(ε .             

 
 

Figure 2. The zig-zag polyhex nanotube TUHC6[2n,2] = C2n(U)  P2,  
where U = {v2, v4, …, v2n}. 

 
By a similar argument as in the proof of the previous theorem, we have: 

 
Theorem 5. Let G and H be two connected graphs and let U be a 

nonempty subset of V(G). Then 
 

i). M*
2 (G(U)  H) = |V(H)|M*

2 (G(U)) + |U|M*
2 (H) + ζ(H)M*

1 (G(U)) + |E(G)|M **
1

(H) + |E(H)| 
Uu

2
G (U )(u ) )(ε + M*

1 (H) 
Uu

G (U )(u )ε . 

ii). M **
1 (G(U)  H) = |V(H)|M **

1 (G(U)) + |V(G)|M **
1 (H) + 2ζ(G(U))ζ(H).           
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The exact formulas for M*
2  of the Cartesian product of graphs were 

obtained in [9]. We claim that this result is incorrect. The aim of the next corollary 

is to improve this result. In the part (i) of the above theorem, if we set U = V(G), 

we obtain the following corollary. 
 
 

Corollary 6. Let G and H be two connected graphs. Then 
 

M*
2 (G × H) = |V(H)|M*

2 (G) + |E(G)|M **
1 (H) + ζ(H)M*

1 (G) 

+ |V(G)|M*
2 (H) + |E(H)|M **

1 (G) + ζ(G)M*
1 (H).                

 

For the graphs in Figs.1 and 2, namely, zig-zag polyhex nanotube 

TUHC6[2n,2] and hexagonal chain Ln , some graph invariants were studied in 

[15, 16, 17, 18]. Here we obtain Sz*, M*
1 , M*

2  and M **
1  of zig-zag polyhex 

nanotube and the hexagonal chain Ln. 
 

Example 7. Consider the zig-zag polyhex nanotube TUHC6[2n,2] (see 

Fig. 2). Diudea, who was the first chemist which considered the problem of 

computing topological indices of nanostructures, introduced the notation TUHC6. 

The zig-zag polyhex nanotube is the graph C2n(U)  P2, where U = {v2, v4, …,v2n}, 

see Fig. 2. On the other hand, one can easily see that Sz**(C2n(U)) = 

Sz***(C2n(U)) = Sz*(C2n) = 2n3 and Sz*(C2n(U)) = 2n(n2 – 1) and so, by Theorem 2, 

we have 
 

Sz*(TUHC6[2n,2]) = 20n3 – 4n. 
 

Example 8. Consider the hexagonal chain Ln (see Fig. 1). The 

hexagonal chain Ln is the graph P2n+1(U)  P2, where U = {v1, v3, …,v2n+1}, see 

Fig. 1. On the other hand, it is not difficult to check that Sz*(P2n+1) = Sz*(P2n+1(U)) = 

3
4 n3 + 2n2 + 3

2 n, Sz**(P2n+1(U)) = 3
4 n3 + 2n2 + 3

5 n and Sz***(P2n+1(U)) = 3
8 n3 + 

2n2 – 3
2 n and so, by Theorem 2, we obtain 

 

Sz*(Ln) = 
3
44 n3 + 24n2 + 

3
43 n +1. 
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Figure 3. The linear phenylene Fn = P3n(U)  P2, where  
U = {v3k+1 | 0≤ k ≤ n – 1 }  { v3k | 1 ≤ k ≤ n}. 

 
Example 9. Consider the linear phenylene Fn including n benzene ring 

(see Fig. 3). The linear phenylene Fn is the graph P3n(U)  P2, where U = {v3k+1 | 0≤ 

k ≤ n – 1 } { v3k | 1 ≤ k ≤ n}, see Fig. 3. On the other hand, it is not difficult to 

check that Sz*(P3n) = Sz*(P3n(U)) = 2
9 n3 – 2

1 n, Sz**(P3n(U)) = 2
9 n3 + 2

1 n and 

Sz***(P3n(U)) = 9n3 – 2
9 n2 – 2

1 n and so, by Theorem 2, we obtain Sz*(Fn) = 

Sz*(P3n(U)  P2) = 54n3. 

In [19, Example 3.2], the authors claim that Sz(Fn) = 54n3 – 4n. We claim 

that this result is incorrect. By [19, Example 3.2], Sz(F1) = 50 and Sz(F2) = 424 

that, are incorrect. The correct values are Sz(F1) = 54 and Sz(F2) = 432. Note 

that Fn is bipartite and so Sz*(Fn) = Sz(Fn). On the other hand, by the above 

example, Sz*(Fn) = 54n3 and so, Sz(Fn) = 54n3. 
 
 

 
 

Figure 4. The molecular graph of truncated cube H = G(U)  P2,  
where U = {v1, v4, v9, v12}. 
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Example 10. Let H be the graph of truncated cube. Then H = G(U)  

P2, where U = {v1, v4, v9, v12}, as shown in Figure 4. It is not difficult to check that 

Sz*(G) = Sz*(G(U)) = 526, Sz**(G(U)) = 380, Sz***(G(U)) = 280 and so, by 

Theorem 2, we have Sz*(H) = Sz*(G(U)  P2) = 3264. 

 
Example 11. Consider the hexagonal chain Ln and the zig-zag polyhex 

nanotube TUHC6[2n,2] and truncated cube H depicted in Figs. 1, 2 and 4, 
respectively, such that n ˃ 1. One can easily see that  M*

1 (P2n+1(U)) = 6n2, 

M*
2 (P2n+1(U)) = 3

14 n3 – 3
2 n, M*

1 (C2n(U)) = 4n2, M*
2 (C2n(U)) = M

**
1 (C2n(U)) =  

M **
1 (C2n) = 2n3, M*

1 (G(U)) = 160, M
*
2 (G(U)) = 400, 

Ug

(U )2nC (g )ε = n2, 


Ug

2

(U )2nC (g ) )(ε =n3, 



Ug

(U )12nP (g )ε =








n|22nn
n|22nn

2
2
3

2
12

2
3

 , 

2

Ug

(U )12nP )(g )(ε


 = 








n|2n4nn
n|2n4nn

3
223

3
7

3
523

3
7

 , 
Ug

G (U )(g )ε = 20,  

2

Ug
G (U ) )(g )(ε



= 10 and so, by Theorems 4 and 5, for n ˃ 1, we have: 

1. M*
1 (Ln) = M*

1 (P2n+1(U)  P2) = 






n|2214n15n
n|2314n15n

2

2
. 

2. M*
1 (TUHC6[2n,2]) = M*

1 (C2n(U)  P2) = 10n(n+1). 

3. M*
2 (Ln) = M

*
2 (P2n+1(U)  P2) = 









n|21n19nn
n|22n19nn

3
2523

3
35

3
2823

3
35

. 

4. M*
2 (TUHC6[2n,2]) = M*

2 (C2n(U)  P2) = 5n3 + 10n2 + 5n. 

5. M*
1 (H) = M*

1 (G(U)  P2) = 432. 

6. M*
2 (H) = M*

2 (G(U)  P2) = 1296. 
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