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ABSTRACT. Let G(V,E) be a connected graph. A set M subset of E is called a 
matching if no two edges in M have a common end-vertex. A matching M in G 
is perfect if every vertex of G is incident with an edge in M. The perfect 
matchings correspond to Kekulé structures which play an important role in the 
analysis of resonance energy and stability of hydrocarbons. The anti-Kekulé 
number of a graph G, denoted as ak(G), is the smallest number of edges which 
must be removed from a connected graph G with a perfect matching, such that 
the remaining graph stay connected and contains no perfect matching. 

In this paper, we calculate the anti-Kekulé number of TUC4C8(S)[p,q] 
nanotube, TUC4C8(S)[p,q] nanotori for all positive integers p, q and CNC2k-1[n] 
nanocones for all positive integers k and n. 
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INTRODUCTION 
 

Mathematical chemistry is a branch of theoretical chemistry in which 
we discuss and predict the chemical structure by using mathematical tools 
and does not necessarily refer to the quantum mechanics. Chemical graph 
theory is a branch of mathematical chemistry in which we apply tools of graph 
theory to model the chemical phenomenon mathematically. This theory plays a 
prominent role in the fields of chemical sciences. A moleculer / chemical 
graph is a simple finite graph in which vertices denote the atoms and edges 
denote the chemical bonds between these atoms in the underlying chemical 
structure. It is important to mention that the hydrogen atoms are often omitted 
in a molecular graph. 

A nanostructure is an object of intermediate size between microscopic 
and molecular structures. It is a product derived through engineering at molecular 
scale. This is something that has a physical dimension smaller than 100 nanometers, 
ranging from clusters of atoms to dimensional layers. Carbon nanotubes (CNTs) 
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are types of nanostructure which are allotropes of carbon and have a cylindrical 
shape. Carbon nanotubes, a type of fullerene, have potential in fields such as 
nanotechnology, electronics, optics, materials science, and architecture. Carbon 
nanotubes provide a certain potential for metal-free catalysis of inorganic and 
organic reactions. Nanotube-based field emitters have applications as nanoprobes 
in metrology and biological and chemical investigations and as templates for the 
creation of other nanostructures. Carbon nanocones are conical structures 
which are allotropes of carbon having at least one dimension of the order one 
micrometer or smaller. 

An edge set M  of a graph G  is called a matching if no two edges in M  
have a common end vertex. A matching M  of G  is perfect if every vertex of G  
is incident with an edge in M . In organic moleculer graphs, perfect matchings 
correspond to Kekulé structures, playing an important role in analysis of the 
resonance energy and stability of hydrocarbon compounds [1]. For example, it 
is well known that carbon compounds without Kekule structures are unstable. 
The study of Kekule structures of chemical compounds is very important, because 
they have many “hidden treasures” that may explain their physical and chemical 
properties [2]. The notations used in this paper are mostly taken from [3]. 

The anti-Kekulé number of a connected graph G  is the smallest number 
of edges that must be removed from the graph G  such that the remaining graph 
is still connected but has no Kekulé structures. For benzenoids, Vukičević and 
Trinajstić proved in [4] that the anti-Kekulé number of parallelograms with at least 
three rows and at least three columns is equal to 2, they also showed in [5] that 
cata-condensed benzenoids have anti-Kekulé number either 2 or 3 and both 
classes are characterized. Later on, Veljan and Vukičević showed that the anti-
Kekulé numbers of the infinite triangular, rectangular and hexagonal grids are 
9, 6 and 4, respectively [6]. For fullerene graphs, Vukičević showed that the anti-
Kekulé number of the icosahedron  (buckminister fullerene) is 4. In 
general, Kutnar et al. proved in [7] that the anti-Kekulé number of all leapfrog 
fullerene graphs is either 3 or 4 and afterwards Yang et al proved that the 
anti-Kekulé number of all fullerene graphs is 4 [8]. For further study on anti-
Kekulé number of different graphs please consult [9, 10, 11]. 

Let ),( EVG  be a connected graph with vertex set V  and edge set 
E  and let G  has at least one perfect matching (i.e., Kekulé structure). For 

)(GES  , let SG   denote the graph obtained from G  by deleting all the 
edges in S . We call S  an anti-Kekulé set if SG   is connected but has no 
perfect matching. The anti-Kekulé set of minimum cardinality in G  is called 
the anti-Kekulé number, and denoted by )(Gak . 
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MAIN RESULTS 
 

In this paper, we calculate the anti-Kekulé number of ],)[(84 qpSCTUC  
nanotube and ],)[(84 qpSCTUC  nanotori. The anti-Kekulé number of ][2 nCNC k  
nanocones N k , was discussed by the present authors in [12]. Now we 
discuss the anti-Kekulé number of ][12 nCNC k  nanocones N k . 
 
 
RESULTS FOR NANOTUBES 
 

In this section, we compute the anti-Kekulé number for ],)[(84 qpSCTUC  
nanotube. This nanotube is a net of 4C  and 8C , and it can be constructed by 
alternating 4C  and 8C  following a trivalent decoration as shown in Fig. 2. This 
type of tiling can cover a cylinder and a torus nanotube. In a 2 -dimensional lattice 
of the ],)[(84 qpSCTUC  nanotube, p  is the number of octagons in one row and 

q  is the number of periods in the whole lattice. A period consist of two rows of 
edges as shown in Fig. 1. Further detail on the construction of ],)[(84 qpSCTUC  
nanotubes can be found in [13]. 

Carbon nanotubes are molecular-scale tubes of graphitic carbon with 
outstanding properties. They are among the stiffest and strongest fibres 
known, and have remarkable electronic properties and many other unique 
characteristics. For these reasons they have attracted huge academic and 
industrial interest, with thousands of papers on nanotubes being published 
every year. Commercial applications have been rather slow to develop, 
however, primarily because of the high production costs of the best quality 
nanotubes. 

For our purpose, we call the vertices of degree 2  as the boundary 
vertices of a nanotube. One can observe that the boundary vertices lie on 
the first and the last layer of the nanotube. 

Theorem 2.1 Let ],)[(= 84 qpSCTUCG  nanotube, then 3=)(Gak . 

 Proof. Consider the set )(},,{= 321 GEeeeS  , then the graph SG   
contains a vertex v  such that v  is adjacent to two vertices of degree 1, say u  
and w  (see Fig. 1). Since the vertices u  and w  cannot be matched simultaneously, 
the graph SG   is connected but contains no perfect matching. This implies 
that 3)( Gak . 
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Conversely, let )(},{= GEeeU  . We will show that the graph 

UG   is connected and it contains a perfect matching. Clearly, the graph 
UG   will be connected if and only if e  and e  are not adjacent to the same 

boundary vertex. 

 
Figure 1. One period of the graph of ],)[(84 qpSCTUC  with Anti-Kekulé set 

},,{= 321 eeeS  shown by the red edges. 

 
The graph G  is tiled with the cycles of lengths 4  and 8 , such that each 

period contain p  octagons and there are q  such periods. Then the order of G  

is pqGV 8|=)(|  and the number of cycles of length 4  (and length 8  as well) in 

G  is 1)(2 qp . Let us label all the cycles of length 4  and 8  in G  by 4
,lkC  and 

8
,lkC  (respectively), where qk 1  and pl 1  (see Fig. 2). Let )( 4

,lkCE  

(and )( 8
,lkCE ) denote the edge set of the cycle 4

,lkC  (resp. 8
,lkC ) and let 

)()(=)( 4
,

24
,

14
, lklklk CECECE  , where )( 4

,
1

lkCE  and )( 4
,

2
lkCE  be the sets 

containing alternatively the edges of the cycle 4
,lkC , for each k  and l . 

 

Figure 2. The cycles of length 4  and 8  in ]
2

1,)[(84
q

pSCTUC  nanotube 
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Similarly, let )()(=)( 8
,

28
,

18
, lklklk CECECE  , where )( 8

,
1

lkCE  and 

)( 8
,

2
lkCE  be the sets containing alternatively the edges of the cycle 8

,lkC , for 

each k  and l . 
It can be observed that 2|=)(|=|)(| 4

,
24

,
1

lklk CECE . Clearly, either 

)( 8
,

1
lkCE  or )( 8

,
2

lkCE  contains some edges of the cycles of length 4 . Without 

loss of generality, we assume that  












,=,=)}()({)(
;=,=)}()({)(

4
,

4
,

8
,

2

4
,

4
,

8
,

2

evenkforCECECE

oddkforCECECE

jlkliklk

jlkliklk     (1) 

{0,1}.1,1},{  jiwhere  We can define two disjoint perfect matchings in 

G  as follows. 

).(=)(= 8
,

2

,
2

8
,

1

,
1 lk

lk
lk

lk

CEMandCEM 
                       

(2) 

Clearly, )(= 4
,,1 lklk

CEM   and 12 )(= MGEM  . We consider the 

following three cases. 
Case 1. Let e  and e  do not lie on a cycle of length 8 . Then we have 

a perfect matching 1M  (or 2M ) in the connected graph UG  . 

Case 2. Let one of e  and e  lie on a cycle of length 8 . Suppose on 

contrary that e  lies on 8
,lkC , then without loss of generality we can assume that 

)( 8
,

1
lkCEe . Then we have a perfect matching 2M  in the connected graph 

UG  . 

Case 3. Suppose that both e  and e  lie on the cycles 8
,lkC  and 8

,tsC  

(respectively), for qsk  ,1  and ptl  ,1 . 

When ),(),( tslk   then if )( 8
,

1
lkCEe  and )( 8

,
1

tsCEe  , then 2M  is 

a perfect matching in the connected graph UG  . Similarly, when 

)( 8
,

1
lkCEe  and )( 8

,
2

tsCEe  , then )()(= 8
,

28
,

1
1 lklk CECEMM   is the 

required perfect matching in the connected graph UG  . 
When ),(=),( tslk , both edges e  and e  lie on the same cycle of 

length 8 , say 8
,lkC . Then we have the following two subcases. 

(1) Let e  and e  lie in the same class, say )( 8
,

1
lkCE . Then 2M  will be 

a perfect matching in the connected graph UG  . 
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(2) Let e  and e  lie in different classes, say )( 8
,

1
lkCEe  and 

)( 8
,

2
lkCEe  . When e  and e  are adjacent, it is clear that the edges e  and 

e  cannot be adjacent to the same boundary vertex, as the graph will be 
disconnected. Then consider a matching N   in UG   defined in four cases 
corresponding to the possibilities of the edges e  and e , as follows. 














 

2,0).((0,0)
1);(0,(0,0)

(2,0);(0,0)
(0,1);(0,0)

=),(},{)(= 8
,

1

,
1

and

and

and

and

jiwhereeCEMN jlik
ji
    (3) 

It can be seen that each pair of octagons in the matching defined in 
Equ. 3 are joined by the cycle 4

, jlikC  , where  













1,0).(

;=(0,0)=1)(0,
(1,0);

;=(0,1)=(0,0)

=),(
evenkforandoddkfor

evenkforandoddkfor

ji         (4) 

Since )( 8
,

1
lkCEe  therefore 1Me  and thus lies on a cycle of length 

4 , whereas e  does not. Let },,,{=)( 4321
4

, ccccCE jlik  , for ),( ji  as mentioned 

in Equ. 4. Clearly, },,,{ 4321 cccce . Then label these edges with 1= ce  in the 

clockwise direction starting from e . 
Now, using the matching defined in Equ. 3, we can construct a 

matching N  in the graph UG   as follows. 

}.,{}{= 423 cccNN                                                      (5) 

Then N  is a perfect matching in the connected graph UG  , which 
implies that 3)( Gak , and completes the proof. 

 
Figure 3. The matching for the pair of octagons corresponding to the first two 
cases in Equ. (3). The rest of the periods are matched by the matching . 
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RESULTS FOR ],)[(84 qpSCTUC  NANOTORI 

 
The ],)[(84 qpSCTUC  nanotorus (or nanotori) is obtained from the 

],)[(84 qpSCTUC  nanotube by joining the ends of the tube, so giving it the 
shape of a torus. The spoke type edges in the last layer will be joined to the 
corresponding vertices in the first layer (see Fig. 4). 

 
Figure 4. The embedded graph of the )[3,2](84 SCTUC  nanotori 

 
Theorem 2.2 Let ],)[(= 84 qpSCTUCG  nanotori, then 4=)(Gak . 
Proof. Consider a period of the 3 -regular graph of ],)[(84 qpSCTUC  

nanotori, as shown in Fig. 5. Let 1E , 2E  and 3E  be the edge partitions of )(GE  
containing all the edges labelled 1e , 2e  and 3e , respectively. It is easy to see 
that 1E , 2E  and 3E  form three (disjoint) perfect matchings in G . 

Let )(},,,{= 4321 GEhhhhS  , as shown in Fig. 4. Then the graph 
SG   contains a vertex v  such that v  has two pendent vertices adjacent to 

it, which cannot be matched simultaneously. Since no more than two vertices 
from S  are adjacent to a single vertex, the graph G  remains connected. 
Thus, 4)( Gak . 

Conversely, let )(},,{= 321 GEbbbU  , where all edges of U  are not 
adjacent to a single vertex in G . We have the following three cases to be 
discussed. 

Case 1. When all elements of U  belong to same edge class, say 1E . 
Then we have 2M  (or 3M ) as a perfect matching in the graph UG  .  

Case 2. When two elements of U  belong to the same edge class, 
say 1E . Then the third element of U  can be in one of the remaining two edge 
classes, say 2E . Thus 3E  will be a perfect matching in the connected graph 

UG  . 
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Figure 5. A period of ],)[(84 qpSCTUC  nanotori 

 
Case 3. When all elements of U  belong to different edge classes, say 

11 Eb  , 22 Eb   and 33 Eb  . Consider the labeling of all the cycles of length 4 
and 8 in G , as done in Theorem 2.1, respectively by 4

,lkC  and 8
,lkC . With one 

extra row of edges joining the vertices in the last row to corresponding vertices 
in the first row, and thus 11  qk  and pl 1 . Since 11 Eb  , which is the 
class of all horizontal edges, we can assume that )( 4

,1 lkCEb  , for some k  and 
l . Label the edges of 4

,lkC  with },,,{ 4321 cccc  and let 11 = cb . Consider a 
matching M  in UG   defined as follows.  
                                     }.,{},{= 42311 ccccEM                                      (6) 

Clearly, M  is a perfect matching in the connected graph UG  . 
Thus 4)( Gak , which completes the proof. 
 
RESULTS FOR ][nCNCk  NANOCONES 
 

Now we determine the anti-Kekulé number of ][nCNCk  nanocones, 
where 12,1,2=  nqqk . This family of nanocones is parameterized in 
such a manner that k  denotes the length of the cycle placed at the core of 
the nanocone and n  is the number of hexagonal layers placed at the conical 
surface of the nanocone. Now we calculate the anti-Kekulé number of this 
class of nanocones. 
 

Theorem 2.3 Let G  be the graph of ][nCNCk  nanocone, where 
12,1,2=  nqqk , then 2=)(Gak . 

Proof. First we show that 2)( Gak . For this purpose, consider a set 
},{= 21 ssS )(GE  and a }{uvw path in G  as shown in Fig. 6. Then, 
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Figure 6. A representation of ][nCNCk  nanocone, with k  being an odd integer, 

with 1nC  cycles and a uvw path. 
 
there does not exist any perfect matching in the graph SG  . Thus 2)( Gak . 

 
Figure 7. The perfect matching 1M  in [3]3CNC  nanocone obtained by matching 

the edges on Axis-1. 2M  and 3M  can be obtained by matching other Axis. 
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Conversely, let },,,{= 21
i

im
ii

im
vvvC  , for 11  ni , be the 

cycles as shown in Fig. 7. Then the length of the cycle 
im

C  is 1)(2= ikmi . 

Clearly, im  (for 11  ni ) is always odd. 

There are k  different perfect matchings of the graph G  (as constructed 
in Fig. 7, for 3=k ), which can be obtained by relabeling the vertices of the 
graph or just by rotating the graph G . Let kMMM ,,, 21   be the perfect 
matchings in the graph G  obtained by selecting the edges of the graph G  
lying on different axis. The k  axis of the ][nCNCk  nanocone ( k  odd) are 
shown in Fig. 8. 

 
Figure 8. The k  axis for the ][nCNCk  nanocone for odd k  

 
 

The k  perfect matchings lM , for kl 1 , are defined as follows. 

| ,,{= 1
11)2(

1
1)2(11)1)(2(1)1)(2(

1
1)2(1)1)(2(










i
sill

i
sill

i
sill

i
sill

i
ill

i
illl vvvvvvM  

}.,,)(mod1,1 oddaresiwheremzzsni i  

It can be seen that the )(l phase of the matchings lM  and 1lM , 
for 11  kl , are same (see Fig. 7, for instance), and the rest of the phases 
are all different. The edges lying on the axis lines are not included in any 
phase. 
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Let )(GEe , then we have the following two cases. 

Case 1. When e  lies on an axis line. Since each matching lM , 

kl 1 , contains a single axis line. There will be 1k  perfect matchings in 

the graph }{eG  . 

Case 2. When e  does not lie on an axis line. Then e  lies in one of 

the k  phases of the nanocone, say phase )(l . Then if e  belongs to the 

edges of the graph G  matched under lM  then we have 2k  perfect 

matchings tM , kt 1  where lt   and 1 lt , in the connected graph 

}{eG  . Thus 2)( Gak , which completes the proof. 
 
 

CONCLUDING REMARKS 
 

The perfect matchings in a graph correspond to Kekulé structures 

which play an important role in the analysis of resonance energy and stability 

of hydrocarbons. Nanotubes and nanocones are allotropes of carbon having 

enormous applications in the field of nanotechnology, electronics, optics, materials 

science, and architecture. In this study, we proved that the anti-Kekulé number of 

the finite families of ],)[(84 qpSCTUC  nanotubes, ],)[(84 qpSCTUC  nanotubes 

N qp,  and for ][2 nCNC k  nanocones N nk, , is respectively 3, 4 and 

2. Calculations showed that the anti-Kekulé number of almost all nanotubes 

is 2  or 3  in finite case and 4  or 5  if we consider their infinite 2 D lattices. 

Furthermore, our result of the anti-Kekulé number of a nanotorus agree with 

the anti-Kekulé number of fulerenes [8]. 
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