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ABSTRACT. The goal of this study was to develop high statistical significant 
models for lipophilicity estimation for a group of 60 compounds with increased 
toxicity, belonging to alkaloids and mycotoxins. The multiple linear regression 
modelling was made by means of genetic algorithms as a function of 972 
molecular descriptors, computed by ChemOffice and Dragon Plus software and 
completed by internet available module for Log P computation, ALOGPS 2.1. 
The compounds classification has been realized using principal component 
analysis and hierarchical cluster analysis. Data evaluation has been realized by 
various correlation matrices and relevant graphs. The modelling was made 
on the basis of 26 compounds with known log Pexp values and the results 
were validated by means of additional models developed for a series of 20 
compounds. The other 6 compounds, which were excluded from the modelling 
process, were used afterwards as test set for prediction and comparison. 
The most descriptive models were those retaining four descriptors, and in all 
models were selected at least one computationally expressed log P value 
(miLogP, KOWWIN and ALOGP most often). All the obtained results are highly 
suggestive and offer a very pertinent idea regarding the lipophilicity range of 
natural compounds of increased toxicity. The models were validated considering 
various statistical parameters and different correlation matrices defined by 
high statistical significance.  
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INTRODUCTION  

The importance of natural products in diseases prevention is known 
from ancient times and used up to early 1900s, when the “Synthetic Era” began 
and an increased tendency to replace the natural product drugs with synthetic 
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ones has been observed [1]. However, up today they are still intensively used in 
prevention and treatment of cancer and infectious diseases [2, 3]. On the other 
side, despite of beneficent effects, some of the most controversial and toxic 
compounds are also of natural origin. Amongst them there may be mentioned 
the alkaloids and the mycotoxins. The alkaloids are substances synthesized by 
plants [4] or even animals [5], which are defined by slightly basic properties, 
usually associated to the content of nitrogen atoms. These compounds are 
sophisticatedly combining the beneficent and toxic activities. For examples, 
the cinchona alkaloids are generally used for malaria treatment, but in overdose 
it may cause the disease called cinchonism, or the morphine is well known as a 
strong analgesic drug, but it may cause addiction and also in overdose is 
leading to asphyxia and death. In the majority of cases the alkaloids are central 
nervous system stimulants and they are inducing a large variety of biological 
effects [6]. On the other side the mycotoxins, are natural compounds 
biosynthesized by moulds, which unlike the alkaloids, do not have any biological 
beneficent effect. They have strong toxic effects over human and animal health, 
causing cancer, infertility, liver failure, cirrhosis, etc [7-10].  

Most of the biological effects are interconnected to compounds lipophilic 
character. A typical example is represented by heroin and morphine. These 
compounds are differing just by the nature of the functional groups (methoxyl or 
hydroxyl). The heroin, which has a higher lipophilicity induced by the methoxyl 
groups, may easily crossover the biological membranes and exercises a very 
strong biological activity after hydrolysis. On the other side, the morphine is 
crossing the biological membranes more difficult because of the hydroxyl groups 
and implicitly its activity is lower [11, 12]. The lipophilicity is a property often 
used in strategies proposed to enhance the passive internalization of drugs 
into cells [13]. In fact, lipophilicity is an important endpoint used extensively in 
medicinal chemistry and environmental toxicology in predicting biological and 
hazardous effects of chemicals [14]. The lipophilicity is experimentally determined 
as partition coefficient (log P) between two immiscible phases (usually octanol-
water), but it may be also computationally expressed [15]. Furthermore, it is 
a major experimental and theoretical tool in numerous disciplines, including 
medicinal chemistry, toxicology, pharmacology, and environmental monitoring 
[16-18]. The lipophilicity of a solute controls its distribution among body fluids, 
liquid-rich phases, and tissue proteins. For this reason, a quantitative assessment 
of lipophilicity is of great importance in quantitative structure–activity (or –
property) relationship (QSAR/QSPR) studies [19-21]. This methodology is 
highly advantageous because by means of a generated mathematical model, 
many effects may be predicted [22-24]. The ideal goal of investigations 
concerned with the QSPR/QSAR is to predict the behaviour of chemical species 
from a minimal set of input data [14]. There are many possibilities of modelling, 
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but one of the most preferred techniques is multiple linear regression (MLR), 
which is also completed nowadays by partial least square (PLS), principal 
component regression (PCR), genetic algorithms (GA) and even fuzzy 
clustering [25-27].   

In the view of above considerations, our goal was to construct simple 
models for predicting the lipophilicity of various alkaloids and mykotoxins of 
increased toxicity, based on the summation of a contribution value for various 
physicochemical and structural features. In this work we have attempted to 
determine the important factors influencing the lipophilicity of toxic compounds 
and give them quantitative values. The chemometric techniques involved in 
this study are MLR, PCA, GA, PCR and cluster analysis (CA). The actual study 
is built on 60 compounds belonging to alkaloids and mycotoxins. Compounds 
selection for the analysis was based on the known toxic effects and the large 
diversity concerning their physicochemical characteristics and biological activity. 
The experimentally determined partition coefficient (Log Pexp) was employed as 
dependent variable. All the validation procedures strongly support the reliability 
and quality of results obtained.  
 

RESULTS AND DISCUSSION 

The selected compounds, belonging to the mycotoxins and alkaloids, 
are always presenting complex structures, with nitrogen and/or oxygen 
heteroatoms involved in the aromatic system. In order to reveal the similarity 
and differences between the selected compounds some exploratory investigations 
have been performed, by CA (Figure 1(a)) and PCA (Figure 1(b)). The multivariate 
exploratory methods were applied on 980 descriptors computed with Chem 
3DUltra, Dragon Plus and ALOGPS 2.1. According to Figure 1(a) the investigated 
compounds are forming two major groups, one formed by narcotics, mycotoxins, 
and quinine derivatives, while the second is formed by nicotine and caffeine 
derivatives. Moreover, if investigating Figure 1 (b) there may be observed 
that the first principal component (PC1) is linearly distributing the investigated 
compounds and along of this direction the compounds are not separated  
in groups. Once again the aflatoxins group is considered highly similar with 
narcotics, quinine derivatives and also ochratoxins. Moreover, the caffeine and 
nicotine derivatives exhibit high similarities. The literature data are indicating 
that compounds 18, 19 and 20 (cytisine and its derivatives) are nicotinic 
acetylcholine receptor agonist, which means that they interact with the same 
receptors in the brain, and the cytisine intoxication is similar to nicotine 
poisoning [11]. The fact that all these compounds are highly related in the 
PCA chart is an indicative that the entire phenomenon is dictated by their 
chemical structure and induced lipophilicity.  
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The selected group of compounds is defined by a large variety of 
chemical structures, which makes it to be potently used for lipophilicity prediction. 
The importance of such a study occurs from the high impact of the selected 
compounds over human and animal health. In this view the experimental 
lipophilicity (Log Pexp) of the selected compounds has been modelled in two 
different ways: firstly all Log Pexp presented in Table 1 were used to develop 
the models (group A), while in the second situation, groups of 6 values were 
eliminated and then predicted by means of the obtained models. Afterwards, 
 

(a) 
 

 (b) 

Figure 1. Cluster analysis (a) and principal component analysis (b) of the 
investigated compounds considering all descriptors. 
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the obtained values were compared to the observed ones. In the group B 
were eliminated the values that were covered very well the lipophilicity range, 
but there was never selected the extremes. In the groups C and D the selected 
compounds which were left out were different by those selected in group B 
and finally in the case of group E, the eliminated compounds were those with 
the maximum (3 compounds) and minimum (3 compounds) lipophilicity level. 
The obtained models along some statistical parameters (determination coefficient: 
R2, F value, standard deviation: s, cross validated determination coefficient: 
Q2, standard deviation error in calculation: SDEC, standard deviation error 
of prediction: SDEP, the prediction sum of squares: PRESS or root sum 
 
 

Table 1. The lipophilicity indices of the investigated compounds 
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1 2.30 1.97 2.07 2.39 2.17 2.31 2.30 -1.78 -2.55 -0.76 2.41 2.12 
2 1.58 2.30 2.25 1.61 1.80 1.69 1.49 -3.14 -3.55 -0.77 2.75 1.80 
3 0.76 0.99 1.53 1.10 0.72 0.76 0.76 -1.45 -2.55 0.28 1.93 1.39 
4 1.14 1.20 1.72 1.41 1.28 1.08 1.14 -2.72 -2.86 -0.35 2.17 1.64 
5  2.00 2.49 2.82 1.97 2.49 2.71 -3.36 -3.40 -0.73 1.51 3.01 
6  2.78 2.42 1.74 2.24 1.48 2.06 -2.68 -2.84 -0.82 2.32 1.80 
7 1.01 1.06 1.21 0.90 0.88 0.12 0.95 -1.73 -2.47 -0.33 1.38 0.78 
8 0.92 1.81 1.70 1.54 1.83 0.71 1.68 -1.89 -2.61 -0.81 2.17 1.78 
9 2.95 4.19 3.50 3.52 3.69 3.00 3.94 -4.42 -4.23 -0.79 2.44 3.50 
10 -0.07 -1.22 -0.77 0.87 -1.96 -0.60 -1.32 -0.47 -0.21 -0.56 0.29 -0.35 
11 -0.78 -0.46 -0.51 -0.95 -0.05 -0.64 -0.78 -1.27 -1.51 0.02 0.40 -0.31 
12 -0.02 -0.24 -0.09 0.00 -0.39 -0.48 -0.02 -0.80 -1.48 0.02 -0.00 -0.58 
13 -0.73 -0.65 -0.25 -1.09 -1.15 -1.08 -0.73 -1.49 -1.87 1.84 -0.33 -0.72 
14 -1.11 -0.85 -0.44 -0.73 -1.19 -0.24 -0.49 -1.43 -1.57 0.94 0.18 -0.78 
15 -0.55 -0.55 0.10 -0.27 -0.55 0.07 0.08 -1.02 -1.90 0.94 0.58 -0.10 
16 -2.17 -2.00 -3.69 -1.44 -3.61 -2.11 1.63 -1.48 -1.59 2.78 -1.23 -1.76 
17  -0.29 0.31 -0.17 -0.28 0.40 0.06 -1.20 -1.87 1.84 0.48 0.28 
18  0.56 0.79 0.27 0.60 0.24 0.18 -1.25 -1.30 -0.24 1.40 -0.34 
19  1.66 1.64 2.00 2.12 1.22 1.63 -1.05 -1.09 -0.84 2.19 1.42 
20  1.39 2.00 1.01 1.03 0.85 0.79 -3.38 -2.31 -0.29 1.11 1.04 
21 1.17 0.87 1.24 1.09 1.00 1.13 1.17 -0.24 -0.79 -0.81 1.27 1.24 
22 0.36 0.29 0.43 0.27 0.69 0.39 0.36 -0.17 -0.83 0.00 0.12 0.28 
23 -0.34 -0.45 -0.11 -0.48 -0.45 -0.34 -0.37 -0.39 -0.91 0.84 -0.29 -0.32 
24  0.55 1.00 0.47 0.38 0.68 0.68 -0.30 -1.24 -0.75 0.75 0.46 
25  3.10 3.11 2.96 2.95 2.95 3.08 -3.89 -3.19 -0.37 2.04 3.02 
26  -0.96 1.23 -1.45 -1.55 1.70 -0.34 -2.71 -2.97 -0.70 -2.61 0.36 
27  1.52 1.67 1.47 1.49 1.55 1.54 -0.52 -1.09 -0.82 1.56 1.59 
28  2.02 1.49 1.51 3.74 1.15 0.96 -2.48 -2.22 -0.81 1.45 1.39 
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29  -0.01 -0.06 0.00 -0.06 0.23 0.17 -0.87 -0.52 0.48 0.73 0.05 
30  0.89 0.99 0.86 0.72 1.04 0.86 -0.70 -1.39 0.53 1.52 1.04 
31 0.87 0.90 1.27 0.45 1.28 1.25 0.97 -1.21 -1.42 -0.24 1.27 1.16 
32  1.61 1.70 0.30 1.72 1.38 1.42 -3.39 -1.86 -0.33 1.54 1.30 
33 0.07 0.39 0.63 0.41 0.34 0.39 -0.32 -0.18 -0.77 -0.75 0.75 0.30 
34  0.41 0.73 0.48 0.34 0.48 0.28 -0.13 -0.80 -0.75 0.75 0.73 
35  0.05 -0.53 -0.24 -0.48 -0.56 -0.58 -1.07 -0.41 -0.17 0.17 -0.41 
36  0.05 0.18 0.06 -0.80 -0.29 -0.42 -1.54 -0.86 -0.73 0.43 -0.42 
37 -1.54 -0.66 0.36 -0.84 -1.80 1.66 -1.31 -1.24 -3.16 -0.70 -1.17 -0.55 
38 -1.45 -0.32 -0.20 -0.50 -1.20 0.06 -0.87 -0.61 -0.38 -0.17 -0.06 -0.51 
39  -0.64 -0.69 -0.95 -1.32 -0.33 -0.78 -1.11 -0.39 0.53 -0.33 -0.90 
40  0.35 0.48 0.56 -0.05 0.30 0.43 -0.64 -0.44 -0.24 0.73 0.34 
41  1.61 1.81 1.48 -0.38 0.78 1.62 -2.69 -3.27 -0.73 1.88 1.24 
42  1.52 2.16 1.57 -0.17 0.44 1.33 -2.68 -3.04 -0.73 1.96 1.63 
43  0.81 1.81 0.91 -1.71 -0.10 0.81 -2.03 -2.86 -0.26 1.60 1.03 
44  1.76 0.97 1.52 -1.12 1.00 1.77 -2.53 -2.98 -0.70 1.93 1.25 
45  1.81 1.32 1.61 -0.91 0.66 1.47 -2.56 -2.75 -0.70 2.01 1.64 
46  0.81 0.97 0.95 -2.44 0.13 0.95 -1.75 -2.57 -0.24 1.67 1.04 
47  1.17 1.06 0.90 -1.88 0.09 0.54 -2.18 -2.76 -0.26 1.12 0.63 
48  1.06 1.41 1.00 -1.67 -0.51 0.25 -1.97 -2.54 -0.26 1.20 0.75 
49  1.69 1.64 1.14 -0.16 1.08 1.22 -2.47 -3.21 -0.28 1.69 1.28 
50 3.44 2.82 2.84 3.06 3.29 2.60 2.88 -2.99 -3.10 -0.38 2.19 2.73 
51 2.68 3.20 2.94 3.03 3.21 2.69 2.68 -2.89 -3.08 -0.40 2.50 2.75 
52  3.36 3.13 3.30 3.43 2.97 3.69 -3.02 -3.16 -0.38 2.28 3.13 
53  2.77 3.25 3.22 3.49 2.92 2.99 -4.76 -4.23 -0.38 2.38 2.92 
54  2.85 2.92 3.40 4.24 2.89 3.37 -3.48 -3.83 -0.82 2.38 3.13 
55  1.36 2.47 4.53 3.60 4.04 3.96 -4.95 -4.50 -0.79 2.71 3.95 
56 1.93 1.68 1.48 1.84 1.85 0.57 1.93 -2.29 -3.55 -0.83 2.90 1.15 
57 0.98 1.85 1.27 1.46 1.49 0.13 0.98 -3.09 -3.59 -0.79 2.31 1.11 
58 4.74 3.18 2.56 1.74 4.41 3.67 4.74 -4.25 -4.22 0.95 3.21 3.35 
59  3.72 1.95 1.13 3.77 3.05 4.11 -4.32 -3.48 0.95 2.72 2.68 
60  3.49 3.01 3.81 4.70 3.99 5.07 -4.71 -4.34 0.26 3.43 3.60 

 
square: RSS) are enlisted in Table 2. Analysing the obtained models there may 
be remarked that in each model at least one of the computed log P values 
was selected (mostly KOWWIN, ALOGPs, miLogP, ALOGP and XLOGP3). 
These values are computed by fragmental (KOWWIN and miLogP), atomistic 
(ALOGP-using Ghose and Crippen algorithm), topological (ALOGPs) and also 
empirical (XLOGP3) algorithm. The selection of these lipophilicity descriptors in 
the best models is not randomly since during the last years, they have proved to 
be the most descriptive computed lipophilicity indices [28, 29]. Moreover, 
according to the selected descriptors, the log Pexp  values are a consequence of 
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Table 2. The GA linear multiple regression models for lipophilicity prediction 

 
No Models Q2 R2 s F SDEP SDEC PRESS RSS 

Models build on 26 compounds (Group A) 
1 Log Pexp = 0.1395 + 0.8255 KOWWIN 0.88 0.91 0.52 230 0.56 0.50 8.21 6.41 
2 Log Pexp = - 0.2349 + 0.6514 KOWWIN + 

0.0125 Vs 
0.91 0.93 0.45 155 0.48 0.42 6.03 4.67 

3 Log Pexp = 0.1091 + 1.0709ALogPs – 
0.9774Mor20m + 4.7996Mor32m 

0.96 0.97 0.32 213 0.33 0.29 2.77 2.26 

4 Log Pexp = 1.2519 + 0.3954miLogP + 
0.5413KOWWIN + 3.4885Mor32m – 
5.7300HATS1u 

0.96 0.98 0.26 255 0.32 0.23 2.64 1.37 

5 Log Pexp = - 0.6331 + 1.1622ALogPs + 
0.2518X1v – 1.6898MATS3e – 
0.2352DP09 + 4.5783Mor32m 

0.98 0.99 0.22 276 0.23 0.19 1.41 0.97 

Models build on 20 compounds (Group B; without compounds 4, 13, 23, 33, 51, 57) 
1 Log Pexp = 0.1816 + 0.83271KOWWIN 0.86 0.90 0.58 161 0.64 0.55 8.19 6.06 
2 Log Pexp = - 0.2941 + 0.6324KOWWIN + 

0.0298As 
0.91 0.93 0.50 112 0.53 0.46 5.71 4.23 

3 Log Pexp = - 0.9193 – 1.9805MATS3e + 
0.0912RDF055m + 1.1346ALOGP 

0.94 0.96 0.37 140 0.41 0.33 3.40 2.20 

4 Log Pexp = -0.6413 + 0.8452ALogPs – 
1.6617MATS3m + 3.5942Mor32m + 
0.4381MLOGP 

0.96 0.98 0.31 157 0.34 0.37 2.25 1.41 

5 Log Pexp = 3.8334 – 0.9217ALogPs + 
0.8379miLogP + 0.8175KOWWIN – 
3.3724Ovality + 0.0005PMIY 

0.96 0.98 0.26 178 0.35 0.22 2.42 0.93 

Models build on 20 compounds (Group C; without compounds 1, 7, 21, 31, 37, 56) 
1 Log Pexp = - 0.2090 + 1.0901ALOGP 0.87 0.91 0.55 174 0.61 0.52 7.40 5.49 
2 Log Pexp = - 0.4625 + 0.5522KOWWIN + 

0.0116D/D 
0.91 0.94 0.46 129 0.50 0.53 5.02 3.62 

3 Log Pexp = - 3.3935 + 2.4782GATS3p + 
0.0163Vs + 1.0494ALOGP 

0.96 0.98 0.28 240 0.32 0.25 2.11 1.27 

4 Log Pexp = - 4.7179 + 3.5208GATS3e + 
0.7891Mor10v + 0.0106Vs + 1.2385ALOGP 

0.98 0.99 0.18 426 0.22 0.16 0.97 0.51 

5 Log Pexp = 0.0973 + 0.6455XLOGP2 – 
3.2650MATS3e + 0.0660RDF015u – 
8.0145G1m + 0.5829ALOGP 

0.99 0.99 0.15 536 0.16 0.12 0.51 0.30 

Models build on 20 compounds (Group D; without compounds 2, 9, 22, 38, 50, 58) 
1 Log Pexp = - 0.1992 + 0.9829miLogP 0.89 0.91 0.39 188 0.41 0.37 3.31 2.68 
2 Log Pexp = - 0.0780 + 0.6053miLogP + 

0.3286KOWWIN 
0.95 0.96 0.27 207 0.28 0.24 1.61 1.21 

3 Log Pexp = - 0.9215 + 0.3604miLogP + 
2.2192DISPp + 0.4643MLOGP 

0.95 0.97 0.24 171 0.26 0.22 1.40 0.93 

4 Log Pexp = - 0.01782 + 0.7195miLogP + 
0.3036 KOWWIN + 0.7766 MATS4m – 
0.2757Mor08u 

0.97 0.98 0.18 234 0.21 0.16 0.92 0.49 

5 Log Pexp = - 0.8269 + 0.7924miLogP + 
0.3270KOWWIN + 0.6819MATS4e – 
0.3205Mor08e + 12.6679R4u+ 

0.99 0.99 0.13 352 0.14 0.11 0.39 0.24 
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No Models Q2 R2 s F SDEP SDEC PRESS RSS 
Models build on 20 compounds (Group E; without compounds 9, 16, 37, 38, 50, 58) 

1 Log Pexp = - 0.05856 + 0.8986miLogP 0.89 0.91 0.33 177 0.34 0.31 2.30 1.94 
2 Log Pexp = - 0.0541 + 0.5530miLogP + 

0.4046XLOGP3 
0.94 0.95 0.24 171 0.26 0.22 1.31 1.00 

3 Log Pexp = 0.5240 + 0.4764miLogP + 
0.3904XLOGP3 – 4.0970HATS3m 

0.95 0.97 0.21 195 0.24 0.18 1.12 0.58 

4 Log Pexp = 0.9268 + 0.4889miLogP + 
0.4650XLOGP3 – 2.0570Mor27p – 
14.8156R3m+ 

0.98 0.99 0.15 246 0.16 0.13 0.53 0.32 

5 Log Pexp = 1.7449 + 0.3402miLogP + 
0.5925XLOGP3 – 0.6149piPC03 – 
0.1954Mor05u – 0.5576Mor30e 

0.98 0.99 0.14 209 0.16 0.12 0.50 0.28 

 
 
the molecular conformation/configuration and also of the atoms nature, since 
the most selected descriptors were from the 2D autocorrection and 3D MoRSE 
descriptors. These are completed by WHIM descriptors which are also very 
descriptive in partition coefficient prediction, since they are 3D dimensional 
descriptors based on the calculation of principal component axes computed 
from a weighted covariance matrix obtained by the molecule geometrical 
coordinates. They contain information concerning, size, symmetry, shape and 
distribution of the molecular atoms [30]. Other descriptors were belonging to the 
following categories: steric, Randic molecular profiles, RDF descriptors, 
topological descriptors, connectivity indices, geometrical descriptors and 
GETAWAY descriptors. The most selected descriptor (in all groups) was 
miLogP (12 times), followed by KOWWIN (10 times), ALOGP (5 times) and 
XLOGP3 (4 times). All the results and even the selected class of descriptors 
are in fair agreement with observations made by our group in previous studies 
[20, 21] and also by Benfenati [31]. 

Furthermore, as can be seen from the Table 2 the statistical parameters 
of quality are increasing while the number of selected variables is bigger. 
However, this doesn’t means that the predictive capacity is higher, since 
the coefficients level may be a consequence of over-fitting. Even if the Q2 
has an increased value, the prediction capacity may be low, especially for 
compounds not included in the training set. In order to observe, which models 
are more valuable, a correlation matrix has been made between computed 
and experimental Log P values and the predicted ones (Table 3).  

There may be observed that Log Pexp is strongly correlating to ALOGP 
and to KOWWIN, which is in fact expected since they were often selected 
in the best models obtained. In addition, it is strongly correlated to the predicted 
values. Investigating the correlation of the predicted values with experimental 
ones, there may be observed that the highest correlations were obtained for 
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Table 3. The correlation matrix between the experimental and computed log P values 
and the predicted ones (bold values indicate correlation coefficients higher than 0.90, 
while italic bolded values indicate correlation coefficients between 0.80 and 0.89) 
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A LogP 1 0.83 0.78 0.78 1.00 0.84 0.80 0.74 0.84 -0.62 -0.53 0.95 
LogP 2 0.88 0.81 0.82 0.98 0.88 0.87 0.79 0.89 -0.72 -0.64 0.97 
LogP 3 0.94 0.85 0.86 0.87 0.83 0.89 0.86 0.91 -0.72 -0.65 0.98 
LogP 4 0.84 0.80 0.88 0.95 0.86 0.88 0.80 0.91 -0.69 -0.62 0.99 
LogP 5 0.94 0.85 0.85 0.83 0.79 0.87 0.87 0.89 -0.69 -0.66 0.99 

B LogP 1 0.83 0.78 0.78 1.00 0.84 0.80 0.74 0.84 -0.62 -0.53 0.95 
LogP 2 0.91 0.84 0.85 0.95 0.88 0.89 0.82 0.92 -0.76 -0.69 0.96 
LogP 3 0.88 0.87 0.90 0.80 0.88 0.91 0.82 0.97 -0.79 -0.79 0.98 
LogP 4 0.93 0.82 0.85 0.81 0.77 0.88 0.91 0.89 -0.69 -0.65 0.99 
LogP 5 0.75 0.73 0.85 0.92 0.85 0.84 0.74 0.86 -0.67 -0.60 0.99 

C LogP 1 0.91 0.92 0.93 0.84 0.91 0.91 0.82 1.00 -0.77 -0.75 0.95 
LogP 2 0.86 0.79 0.81 0.95 0.89 0.88 0.76 0.89 -0.74 -0.64 0.96 
LogP 3 0.87 0.84 0.88 0.77 0.87 0.92 0.79 0.96 -0.79 -0.78 0.97 
LogP 4 0.84 0.83 0.86 0.67 0.81 0.87 0.78 0.93 -0.76 -0.78 0.98 
LogP 5 0.84 0.85 0.86 0.78 0.93 0.89 0.74 0.95 -0.77 -0.77 0.95 

D LogP 1 0.86 0.85 1.00 0.78 0.79 0.84 0.84 0.93 -0.68 -0.67 0.90 
LogP 2 0.90 0.87 0.96 0.93 0.86 0.87 0.85 0.94 -0.69 -0.65 0.95 
LogP 3 0.89 0.85 0.94 0.80 0.77 0.84 0.92 0.90 -0.64 -0.61 0.92 
LogP 4 0.89 0.85 0.96 0.89 0.83 0.87 0.87 0.93 -0.67 -0.64 0.95 
LogP 5 0.89 0.85 0.96 0.88 0.80 0.85 0.86 0.92 -0.66 -0.63 0.94 

E LogP 1 0.86 0.85 1.00 0.78 0.79 0.84 0.84 0.93 -0.68 -0.67 0.90 
LogP 2 0.90 0.84 0.97 0.82 0.84 0.95 0.85 0.96 -0.76 -0.73 0.93 
LogP 3 0.91 0.85 0.97 0.83 0.84 0.94 0.85 0.96 -0.74 -0.71 0.93 
LogP 4 0.90 0.82 0.94 0.81 0.82 0.94 0.85 0.94 -0.73 -0.70 0.93 
LogP 5 0.86 0.77 0.90 0.87 0.86 0.96 0.79 0.92 -0.73 -0.67 0.93 

Log Pexp 0.92 0.87 0.90 0.95 0.84 0.86 0.89 0.95 -0.72 -0.65 1.00 

 
groups A and B, while the lowest is obtained in case of group E. This 
observation is indicating that for a more accurate prediction a very important 
step is the selection of the training set. The correlation with log P values 
obtained for group A was expected because there was no elimination made 
and each particular value has been contributed to the final model. On the other 
side, in case of group B, the elimination was made in such a manner that the 
entire range was described, without eliminating the extreme values, which 
allowed them to have a significant contribution to the final developed models. 
However, when the eliminated values were the extreme ones, the correlation 
was lower because the model was built in a reduced range and then used 
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for outside values prediction. On the basis of this observation there may be 
concluded that the selection of training set in case of prediction models 
generation is crucial and it may affect the reliability of the entire following 
results. Moreover, it is indicating that the elimination of the values, which would 
be used further for prediction evaluation (test set), must cover as much as 
possible the training, but the extreme values must be kept. The viability of the 
models which leaded to the best correlation with experimental values (models 
with 4 descriptors) is illustrated by the representation of the observed vs. 
predicted values (Figure 2). The statements above are also very well supported 
by histograms and normal distribution and box and whisker plot presented in 
Figure 3 and 4.  
 
 

 (a)  (b) 

 (c)  (d) 

 (e) 
 

Figure 2. Graphs of predicted vs observed values corresponding to the best 
models: group A (a), group B (b), group C (c), group D (d), and group E (e). 
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 (a) (b) 

(c) (d) 

(e) (f) 
 

Figure 3. Histograms and normal probability plot of data corresponding to 
experimental (a,b), experimental including estimated values by  

model E (5)-(c,d), and KOWWIN values (e,f). 
 
 
In order to observe the ability of the obtained models to predict the 

lipophilicity the list of Log Pexp has been completed with the predicted values 
(were missing) and correlated with the computed ones (Table 4). The maximum 
value of the correlation coefficient (r) in this case is 0.98, and it is observed 
that once again the best correlations are obtained with ALOGP and KOWWIN. 
In all cases the log S values have led to lower statistical correlations, which 
mean that the solubility descriptors are not describing very well the lipophilicity.  
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Figure 4. Box and whisker plot of data corresponding to experimental, 

experimental including estimated values by model E (5), and KOWWIN values. 
 
In many situations the PCR combined with GA for property modelling is 

leading to more appropriate results. However, in our case the obtained models 
had lower statistical quality and prediction capacity. The highest Q2 value that 
was reached was 0.91. If comparing to the models presented in Table 2, there 
is no doubt that the classical modelling has leaded to better results. This may be 
explained by the fact that the PCA has the ability to concentrate in the first 
few components the entire information contained in the initial matrix. This is 
in many cases advantageous, but as can be seen from the models presented in 
Table 2, only few descriptors are correctly defining the lipophilicity, while the 
others have no positive contribution. The inefficient prediction models obtained 
by PCR-GA may be a consequence of the large of useless information retained 
in the scores of the first principal components involved later in the modelling. 
The principal components are a consequence of all the descriptors and most of 
them do not describe correctly the lipophilicity, which is finally leading to the 
lower quality models. 

As can be observed from Table 1, the lipophilicity range is generally 
between -3 to 3, which means that for a high biological activity is very important 
to have a certain level of lipophilicity, in order to cross the biological membranes. 
This range is indicating that for an increased activity the lipophilicity level doesn’t 
have to be too high, when appear the situation of total absorption in the adipose 
tissue (i.e. skin discoloration in case of carotene overdose), or the opposite 
situation when the compounds are unable to cross in simple form the biological 
membranes (i.e. water biological membrane crossing by means of an aquapurine 
protein). These observations are indicating that the partition phenomena take 
place at cellular level when the lipophilicity is in an optimal range.  
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Table 4. The Correlation matrix between the experimental and predicted lipophilicity 
values vs. the computed lipophilicity indices (bold values indicate correlation 
coefficients higher than 0.90, while italic bolded values indicate correlation 

coefficients between 0.80 and 0.89) 
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A 1 0.81 0.75 0.79 0.98 0.84 0.82 0.73 0.84 -0.62 -0.52 
2 0.86 0.80 0.83 0.96 0.87 0.87 0.78 0.89 -0.69 -0.60 
3 0.93 0.84 0.86 0.86 0.82 0.89 0.86 0.90 -0.71 -0.65 
4 0.84 0.80 0.88 0.94 0.86 0.88 0.80 0.90 -0.69 -0.62 
5 0.93 0.84 0.85 0.82 0.79 0.88 0.87 0.89 -0.69 -0.65 

B 1 0.81 0.76 0.79 0.98 0.84 0.82 0.73 0.84 -0.63 -0.52 
2 0.88 0.82 0.86 0.94 0.87 0.90 0.81 0.92 -0.73 -0.65 
3 0.87 0.87 0.90 0.80 0.87 0.91 0.81 0.97 -0.77 -0.76 
4 0.93 0.82 0.85 0.80 0.77 0.88 0.90 0.89 -0.68 -0.65 
5 0.74 0.72 0.85 0.92 0.85 0.84 0.72 0.86 -0.66 -0.59 

C 1 0.89 0.89 0.91 0.84 0.88 0.91 0.82 0.97 -0.75 -0.73 
2 0.84 0.78 0.82 0.94 0.87 0.87 0.77 0.88 -0.71 -0.61 
3 0.87 0.85 0.88 0.78 0.85 0.91 0.81 0.95 -0.77 -0.76 
4 0.85 0.84 0.87 0.68 0.79 0.87 0.79 0.93 -0.75 -0.78 
5 0.85 0.85 0.88 0.80 0.89 0.90 0.78 0.95 -0.78 -0.74 

D 1 0.87 0.85 0.94 0.82 0.81 0.87 0.86 0.93 -0.69 -0.68 
2 0.88 0.84 0.91 0.92 0.86 0.88 0.84 0.93 -0.69 -0.64 
3 0.89 0.84 0.90 0.82 0.79 0.86 0.89 0.90 -0.66 -0.63 
4 0.89 0.84 0.93 0.89 0.84 0.89 0.87 0.93 -0.69 -0.65 
5 0.89 0.84 0.93 0.89 0.82 0.88 0.87 0.93 -0.68 -0.66 

E 1 0.87 0.86 0.94 0.82 0.81 0.87 0.86 0.93 -0.69 -0.68 
2 0.90 0.87 0.93 0.84 0.86 0.91 0.86 0.96 -0.73 -0.70 
3 0.90 0.88 0.93 0.85 0.85 0.90 0.86 0.95 -0.71 -0.68 
4 0.91 0.87 0.91 0.84 0.84 0.90 0.87 0.95 -0.70 -0.67 
5 0.89 0.85 0.90 0.90 0.89 0.91 0.83 0.94 -0.71 -0.65 

         * Log Pexp known + predicted 
 
 

CONCLUSIONS 

The quantitative structure-lipophilicity relationships of 60 structurally 
diverse bioactive compounds have been investigated in order to develop a 
sound predictive model for the lipophilicity estimation of natural compounds 
with strong biological activity. The lipophilicity expressed as Log P was found to 
be significantly influenced by a series of descriptors coded as 2D autocorrection, 
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3D MoRSE or WHIM. The modelling process validated through different 
methodologies of training set selection, has been supported by highly relevant 
statistical parameters and graphs. The obtained results were highly descriptive 
and in a very good agreement with the computed lipophilicity indices. The best 
models were those with four retained descriptors, but the models with three, two 
or one descriptor produce also relevant results in a very good agreement with 
computed lipophilicity indices. In addition, the results obtained in this study for a 
large number of important natural compounds add a real and useful contribution 
to the data collection concerning their characteristics and might be a starting 
point for future investigation concerning the optimal lipophilicity range. 
 
 
EXPERIMENTAL SECTION 

The selected compounds for this study belong to alkaloids and 
mycotoxins group, as follows: cocaine (1), heroine (2) morphine (3), codeine (4), 
noscapine (5), thebaine (6), oxycodone (7), hydromorphone (8), papaverine (9), 
caffeine (10), theobromine (11), theophylline (12), xanthine (13), hypoxanthine (14), 
allopurinol (15), uric acid (16), oxypurinol (17), cytisine (18), sparteine surrogate (19), 
varenicline (20), nicotine (21), nicotinic acid (22), nicotinamide (23), n-formyl 
nornicotine (24), brevicolline (25), pyridine,3-(1-methyl-1-oxido-2-pyrrolidinyl)-,1-
oxide (26), n-ethyl nornicotine (27), anabaseine (28), rac-trans 3'-aminomethyl 
nicotine (29), rac-2-amino nicotine (30), anabasine (31), anatalline (32), cotinine 
(33), ortho-cotinine (34), rac-trans-cotinine carboxylic acid (35), rac-trans-cotinine 
carboxylic acid methyl ester (36), cotinine n-oxyde (37), 3-hydroxy cotinine (38), 
rac 3’-hydroxy cotinine 3-carboxylic acid (39), rac3’hydroxy-methyl nicotine (40), 
aflatoxin B1 (41), aflatoxin B2 (42), aflatoxin B2a (43), alatoxin G1 (44), aflatoxin 
G2 (45), aflatoxin G2a (46), aflatoxin M1 (47), aflatoxin M2 (48), aflatoxicol (49), 
quinine (50), cinchonine (51), hydroquinine (52), quinotoxine (53), quininone (54), 
bromoquinotoxine (55), strychnine (56), brucine (57), ochratoxin A (58), ochratoxin 
B (59) and ochratoxin C (60). The Log Pexp for 26 of the above mentioned 
compounds has been obtained from different databases (www.chemspider.com; 
http://esc.syrres.com/esc/est_kowdemo.htm; www.vcclab.org; and 
http://www.biobyte.com). Both experimental and computed lipophilicity 
indices are enlisted in Table 1. In order to obtain the desired information, 
the first two web pages had required the CAS registry number of the 
compounds, while the last two had required the SMILE formula, which was 
obtained on www.molinspiration.com.  

The molecular descriptors for the selected compounds were computed 
with ALOGPS 2.1 Internet module, Chem Office 8.0 and Dragon Plus 5.4 
software. The ALOGPS 2.1 was able to compute six log P values (ALOGPs, 
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AC logP, miLogP, KOWWIN, XLOGP2 and XLOGP3) and two Log S values 
(ALOGpS and AC logS) on the basis of compounds SMILE formula. Previous 
of descriptors computation, the structure of each molecule has been drawn 
in Chem Draw 8.0 application, and the obtained structures were further 
energetically optimised by means of molecular mechanics force field procedure 
included in Hyperchem version 8.0 (www.hyper.com) and the resulting geometries 
were further refined by means of the semi-empirical method Parametric 
Method-3 using the Fletcher–Reeves algorithm and a gradient norm limit of 
0.009 kcal Å-1. The optimized geometries were loaded by the above presented 
software in order to calculate the molecular descriptors. The Chem Office 8.0 
software through the application Chem 3DUltra allows the computation of 30 
descriptors classified as electronic, steric and thermodynamic ones, while 
Dragon Plus 5.4 allows the computation of 942 descriptors belonging to the 
following groups: constitutional descriptors, walk and path counts, information 
indices, edge adjacency indices, Randic molecular profiles, RDF descriptors, 
WHIM descriptors, functional groups counts, charge descriptors, topological 
descriptors, connectivity indices, 2D autocorrelation, Burgen eigenvalues, 
eigenvalue based indices, geometrical descriptors, 3D-MoRSE descriptors, 
GETAWAY descriptors, atom centred fragments and molecular properties. 
The correlations, graphs, PCA and CA were realized by Statistica 8.0 software, 
while GA was made by MobyDigs 1.0 software. The developed models have 
been designed to retain 1 to 5 descriptors. The modelling has been realized 
on the basis of the matrix formed by the computed descriptors and also on 
the basis of the scores obtained by applying PCA on the matrix formed by 
the computed descriptors.   
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