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ABSTRACT. The chiral HPLC separation parameters of a series of fourteen 
β-blockers previously performed on four polysaccharide-based chiral stationary 
phases (CSPs) was evaluated through computational techniques, using a set 
of 340 molecular descriptors (MD), calculated with the Molecular Operating 
Environment (MOE) software. Several semi-empirical mathematical models 
were built and refined by PLS, O2PLS multivariate data analysis and by 
PLS-Tree® clustering, correlating chromatographic data with the descriptors. 
The resulting models revealed the importance of certain analyze descriptors 
shaping chromatographic behaviour of the studied enantiomers. The chiral 
selector backbone as well as the presence of halogen atom(s) in the structure 
of the used stationary phase appears to exert an influence on the type of 
descriptors that significantly contribute either positively or negatively on the 
prediction power of the developed models. The influence of additive on the 
predictive power of models was also briefly analysed. This QSPR study generated 
models with a good predictive power. However, these results could be 
substantially improved in the future by including the descriptors for the chiral 
selectors and additives in the model and by performing docking studies. 
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INTRODUCTION 
 

The development of methods for the separation of enantiomers is of 
significant importance in analytical chemistry, because of the identical nature of 
their physico-chemical properties and, at the same time, the highly stereospecific 
interaction behaviour with other chiral molecules, in specific conditions. In clinical 
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practice it translates in differences in terms of biological activity, potency, toxicity. 
In analytical chemistry research, more specifically in direct chromatographic 
separations, it leads to the formation of distinct diastereomeric complexes 
between the chiral selector and each of the optical isomers. Researchers working 
on enantiomeric separations using chiral stationary phases (CSPs) are faced 
with the challenge of having to screen and select the most appropriate chiral 
selectors and understand whether the chiral discrimination can be indeed 
achievable. This is generally done by trial and error, resulting in a time consuming 
and expensive strategy [1]. In order to reduce costs and time, experiments have 
started to be coupled with attempts at rationalizing enantiospecific recognition by 
a chiral selector at a molecular level. In its review on separation mechanisms 
in stereoselective chromatographic and electromigration techniques, Scriba 
notes several factors that might be involved in the stereoselective interactions 
between enantiomers and chiral selectors: H-bonds and π–π interactions, fit 
or non-fit of the solute in a cavity or cleft of the selector, conformational changes 
of the selector during complex formation with the solute (induced-fit) [2].  

A deeper understanding of the manner in which the solute and selector 
features correlate with the experimental outcomes can be achieved by building 
interaction and prediction models. A detailed discussion of the models of chiral 
separations can be found in the review by Lämmerhofer [3]. 

The approaches having been used so far to build such models are 
quantitative structure-property relationships (QSPR), quantitative structure-
retention relationships (QSRR) and quantitative structure-activity relationships 
(QSAR). The idea of these computerized statistical chemometric techniques is to 
find a correlation between dependent variables, like chromatographic parameters 
and independent variables, which are various analyte or/and selector descriptors. 
These have been applied to predict retention for a new analyte and to identify 
unknown analytes, to investigate the molecular mechanism of separation in a 
chromatographic system and predicting retention factors [4-6], separation factors 
[7, 8] and resolution [9] or by performing docking studies [10]. Also, such models 
were used to quantitatively compare separation properties of different types of 
chromatographic columns, to evaluate properties like lipophilicity and dissociation 
constants, to estimate relative bioactivities within sets of drugs. 

Aside from the mentioned applications, these chemometric techniques 
can be used for optimizing HPLC chiral separations by offering the possibility of 
rationalizing the selection of a chiral column with characteristics that can be 
provided by QSRR. Many papers are focused on the use of chirality descriptors 
in QSAR [11-13], some results being selected to be discussed in the following 
rows. Aires-de-Sousa and Gasteiger developed two different kinds of chirality 
codes named ‘‘conformation-independent chirality code’’ (CICC) and ‘‘conformation-
dependent chirality code’’ (CDCC) to distinguish between enantiomers [14, 15], 
but when investigating further the efficiency along a more straightforward statistical 
technique [16], they did not satisfy. In order to generate more interpretable 
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results, Zhang et al. [17] introduced the Physicochemical Atomic Stereodescriptors 
(PAS) based on twenty-one physicochemical properties of the ligands attached to 
a chiral centre. Later, total and atom-level molecular descriptors relevant to 
QSAR/QSPR studies and ‘rational’ drug design were developed to define 
quadratic chiral indices for a molecule from its pseudograph considering either 
atom (vertex) adjacency [18-20] or bond (edge) adjacency [21]. Their drawback 
was caused by the use of 2D molecular information for their calculation. Their 
application was subsequently extended to consider 3D features of small to 
medium-sized molecules based on the trigonometric-3D-chirality-correction factor 
approach, using a new vector called the chirality molecular vector [22]. However, 
these descriptors and codes were not broadly used because of the complicated 
computational methods. Because of the vast number of molecular descriptors 
available, but which were not able to discriminate between enantiomers several 
research groups [23-27] developed chirality indices by applying correction factors 
to the topological indexes already existent.  

A new class of chirality descriptors called Relative Chirality Index (RCI), 
calculated based on valence connectivity, the formula weights of the groups and the 
electrotopological state of the various atoms and groups in the four substituents 
at the asymmetric carbon were studied by Natarajan et al. [28]. They were found 
that RCI are not being applicable to large molecules. In 2012, five quantum 
chemical descriptors were applied in a study of Rasulev: HLG (gap between 
EHOMO and ELUMO), hardness (η, η= EHOMO - ELUMO=HLG), softness (σ, σ= 1/η), 
electronegativity (χ, χ= (EHOMO + ELUMO) / 2), total energy (Etotal) [29]. 

Nowadays, thousands of descriptors encoding the molecular structure 
features of analytes or selectors can be calculated by various software like 
Gaussian, Marvin Suite [30], DRAGON, CORINA, ADRIANA. Code, MOPAC, 
VolSurf, Molecular Operating Environment (MOE) [4, 8], PaDEL and many 
others.  

Statistical analysis has been the most commonly used tool for interpreting 
correlations between experimental parameters and molecular descriptors. The 
most widely used model-building technique is multivariate data analysis. Aside 
from being most reported in the literature, multivariate statistical analysis and 
building semi-empirical models for prediction could contribute to the elucidation 
of the most significant chiral descriptors contributing to the separation of 
enantiomers. Various methods for data analysis exist today. Partial Least Square 
regression, also known as Projections to Latent Structures (PLS) has been used 
for over three decades. Several improvements have been introduced during this 
period of time; first, orthogonal PLS- OPLS [31] and then O2PLS [32, 33] were 
formulated, which are able to filter out variation that is not directly related to 
the response in various data analytical objectives related to classification, 
discrimination, regression or prediction. In contrast to PLS and OPLS, O2PLS 
is bidirectional and it is able to map how different types of variation in two 
datasets are connected, as well as to identify the unique information in each 
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dataset. The blocks X (chemical descriptors) and Y (chromatographic responses) 
represent two data matrices to be compared. X can be used to predict Y (as 
with PLS and OPLS), but at the same time Y can be used to predict X (unlike 
PLS and OPLS) [34]. With O2PLS one can model: the joint X-Y covariation, 
the Y-orthogonal variation in X and the X-orthogonal variation in Y. 

To our knowledge there is no study already conducted on the entire 
set of β-blockers employed in the current analysis, dedicated to find correlations 
between their 3D structures derived molecular descriptors and the experimentally 
obtained chromatographic parameters. The present study aims to highlight some 
structural features, derived from significant molecular descriptors that are likely to 
be responsible for the observed enantio-selectivity and could possibly contribute 
to understanding the molecular characteristics that are involved in the chiral 
separation mechanism. 

 
 

RESULTS AND DISCUSSIONS 
 

Statistical analysis 

MOE calculates 340 descriptors from three classes - 2D descriptors, 
i3D and x3D, internal and external 3D descriptors [35]. After the screening 
process and the calculation of molecular descriptors, the available data was 
compiled and analysed statistically.  

 

Data analysis of MD and chromatographic parameters by PCA 
and OPLS/O2PLS 

The available X- and Y-block variables, described above, were subjected 
to O2PLS analysis. 

Multivariate data analysis began on the entire data set (all observations 
recorded on 4 columns with 3 additives, N= 336) with a principal component 
analysis (PCA). Standard scaling and mean-centering (centred and scaled to 
unit variance) was performed in the data pre-treatment step. Pre-treatment using 
PCA of the X-data gave an eighteen-component model, which explained 96.4% 
of the variation (R2X=0.964).The score scatter plot of the PCA-X model (data 
not shown), as in the case of the subsequent PLS models, indicated significant 
structural and chromatographic differences between R- and S- carvedilol and the 
rest of the enantiomers. As an additional exploratory data analysis hierarchical 
cluster analysis (HCA) and PLS-Tree®[33] was also performed for identifying 
more subtle clustering within the set of variables (X-data block) or observations 
(both X- and Y-block) that eventually might offer better models for parts of 
the data. As a next step multivariate regression analysis by PLS modelling on 
the entire mean centred and scaled data set has been carried out. Both, PLS 
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and O2PLS regression on the entire data set provided models with relatively 
modest predictive ability (PLS - Q2cum = 0.435; O2PLS - Q2cum = 0.454), 
where one of the possible reasons might be the absence of molecular descriptors 
related to the four different CSPs in the chemometric model. Therefore, the 
observations were grouped in four classes, according to the nature of the CSP. 
The corresponding O2PLS models presented significantly improved prediction 
abilities, where the cross-validated variances were Q2(cum) = 0.606 for column 
IA, Q2(cum) = 0.61 for column IB, Q2(cum) = 0.837 for column IC, Q2(cum)= 0.851 
for column ID. 

 

 
 

Figure 1. 2D loading scatter plot in function of the first two principal  
components of the O2PLS model (separated on ID column) 

 
The loading scatter plot (Figure 1) indicates the relationship between all 

factors (X) and responses (Y), and how molecular descriptors correlate to each 
of the responses of interest (chromatographic parameters). Interpreting a model 
with so many components based on the scatter plots may be cumbersome; 
therefore a more appropriate approach was the examination of the Variable 
Importance in the Projection (VIP) plot, that summarizes the importance of 
the variables both to explain X and to correlate to Y. Usually VIP values larger 
than 1 indicate significant X-variables and values below 0.5 are considered to 
lack significance. Additionally, to correct for data skewness and to improve 
the efficiency of data analysis, further pre-processing (i.e. log-transformation) 
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of the Y-data (α, k', tR) was performed. In order to conveniently compare the 
performance in terms of predictive power amongst the generated models, the Root 
Mean Square Error from cross-validation (RMSEcv) was calculated (data not 
shown). It should be noted that, with and without data pre-processing, the best 
predictive power is obtained in case of the separation factor, whereas the retention 
time seems to be modelled the poorest. Nevertheless, log-transformation of α, k' 
and tR does offer improvements in the case of columns IA and IB, with a slight 
increase of the cross-validation residuals in the case of columns IC and ID. Because 
of the improvements offered by logarithmic transformation of chromatographic 
parameters, only data obtained with log-transform will be further considered. 

 

Model improvement through external validation approach 

External validation approach was also tested, dividing the observations 
into two sub-sets, where the training set represented the initial set of observations 
out of which every 5th observation was removed. The arbitrary sampling of the 
validation set was meant to additionally prove the reliability of the O2PLS model, 
where in principle from the systematic variability the part uncorrelated (orthogonal) 
to Y has already been removed. The resulting set of complementary observations 
(N = 5-6), grouped by the type of additive and used column, represented the 
validation set on which predictions of the chromatographic data were performed. 

The measure of predictive ability, expressed as the Root Mean Square 
Error of Prediction (RMSEP), representing the fitted residuals for the observations 
from the validation set (Table 1), may serve for the comparison between the 
predictive powers of the models generated from the training sets, as well as 
for the validation of the entire dataset. Satisfactory predictive capability, which has 
been obtained in almost every case of the orthogonal PLS modelling, was 
further improved by the log-transformation of three of the chromatographic 
parameters (α, k’ and tR).By comparing the individual measure of predictive 
power (either RMSEcv or RMSEP) for a given model, one can observe that the 
lowest values, thus the best predictive ability, is obtained in case of the separation 
(α) and capacity (k’) factors. 

New OPLS models have been developed for each type of CSP and 
additive, subjecting them to an external validation procedure using the same 
validation set mentioned above (every 5th analysis of the entire dataset). The 
quality and improved predictive ability of the resulting models, as well as the 
ruggedness and validity of the dataset, was proven by the calculated statistical 
parameters (i.e. R2Y, Q2Y, and RMSEP) as well as by the predicted values of 
retention time for the enantiomers of the validation set. 

In spite of the relatively limited number of observations in the calibration 
set the predicted retention time values in many cases are quite close to the 
observed ones. Nevertheless, in some cases relatively high bias between the two 
values is recorded, indicating the need for further improvement.  
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Table 1. Measure of predictive power related to the validation set of the generated 
O2PLS models from the training sets with pre-processing of Y-variables 

 

Column Additive RMSEP 

  Α k' tR RS 
IA EA 0.0562 0.6310 1.4545 0.7216 
 EDA 0.1055 0.6664 2.1430 0.8403 
 DEA 1213.31 0.8300 3.5738 10.719 

IB EA 0.1189 0.7266 1.9881 0.6274 
 EDA 0.2126 1.8689 6.4567 1.9854 
 DEA 0.0823 1.6827 2.1845 0.5373 

IC EA 0.1848 0.6197 2.0120 2.4205 
 EDA 0.7623 1.3828 3.1781 510.571 
 DEA 0.1158 1.0064 2.5615 1.7668 

ID EA 0.2559 0.4868 4.8475 1.1110 
 EDA 0.1156 0.6293 1.7575 0.8572 
 DEA 0.4250 0.5786 6.1821 2.8185 

 

Model improvement by cluster analysis 

Because the above chemometric models do not include molecular 
descriptors weighing the structural and physicochemical particularities of the 
CSPs, and neither of the tested basic additives, additional exploratory data 
analysis has been performed on the available data set for the identification of 
a more subtle data clustering that might have been overlooked by PCA and 
which would enable the generation of daughter training sets that eventually 
could lead to an improved modelling of the chromatographic behaviour.  

Among the two available clustering tools HCA (bottom-up approach) and 
PLS-Tree® (top-down approach), the later was preferred, since it accounts also 
for the Y-variables (chromatographic parameters) and offers cleaner dendrograms 
(classification trees). As algorithm parameters in the assessment of score value split 
points A = 0.1 and B = 0.3 were selected, with a maximum depth of 4 of the PLS-
Tree. Running the PLS-Tree clustering on either the entire data set (all 4 columns 
and all 4 additives) or only on data sub-sets defined by the afore mentioned 
qualitative variables (type of column, type of basic additive) two main clusters 
of β-blockers (Figure 2) could be distinguished: group 1) containing oxprenolol, 
metoprolol, alprenolol, propranolol, pindolol and group 2) the remaining β-blocker 
representatives. When working on the IB and IC data subsets, esmolol, betaxolol 
and carazolol were also assigned into the first group. Due to its particular structure 
carvedilol represents a moderate outlier in several models; however, to build a 
predictive model that applies to the entire class of β-blocker drugs, it has been kept 
within the observations. 
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Figure 2. The two main clusters of b-blockers (left) and the corresponding 

dendrogram (right) by PLS-Tree® clustering on the entire data set 

 
The two main observed clusters were used to create O2PLS class 

models for each individual column. As it turned out, the predictive ability 
(Q2cum) and RMSEP values (Table I and II) of the resulting models were far 
superior to those obtained before clustering of observations (β-blockers), 
therefore once again for each cluster a validation set has been assigned (every 5th 
observation), based on which retention time values predictions were performed. If 
in the case of columns IA and IB no consistent improvements in the prediction 
of retention time is observed (data not shown), in the case of IC and ID 
columns the prediction errors are significantly lower. In the case of IC and ID 
columns the influence of the mobile phase additives (EA, DEA, EDA) on the 
enantioseparation is almost negligible (around 62% on IC and 69% on ID of 
the 14 studied herein β-blockers were baseline or partially separated in the 
case of all the three basic additives employed), in comparison with their influence 
of the enantioselectivity using columns IA and IB (out of the 14 β-blockers 
56% using EA, 25% using DEA, 50% using EDA on the IA column, and 56% 
using EA, 56% using DEA, 44% using EDA on the IB column, respectively were 
baseline or partially separated) The experimental results are taken from the 
study of Moldovan et al. [36]. 

For each column, the clustered data set was once again split according 
to the employed basic additive and O2PLS class models were once again 
generated. The overall predictive power (mean value of Q2Y and RMSEcv) 
for each pair of column - basic additive is significantly improved in comparison 
with the models obtained on the data sets that were not subjected to PLS-Tree® 
clustering (data not shown). 
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Table 2. Measure of predictive power related to the validation set  
of the generated PLS models upon PLS-Tree clustering 

 

Column Cluster RMSEP 

  Α k' tR RS 

IA 1(OXP, PRN et.) 0.1152 0.2816 0.8125 0.9989 
 2 0.0883 1.0001 2.7539 1.3652 

  
IB 1 0.2021 0.5987 1.9030 2.0035 
 2 0.0361 2.5970 3.7774 0.3508 
      

IC 1 0.0356 0.0932 0.2843 0.6766 
 2 0.0127 0.3511 0.9316 0.2059 
   

ID 1 0.1399 0.0375 0.1344 0.9984 
 2 0.1108 0.3817 3.6494 0.8716 
 
Unfortunately, a further splitting of the data sets into validation sets 

significantly reduces the number of observations making up the training sets 
in many cases less than 5 observations, which is not able to further provide 
any real improvements in their prediction ability. However, as mentioned earlier, 
extending the range of accounted variables with molecular descriptors of the 
employed CSPs and mobile phase modifiers, a stronger correlation structure 
between the nature of selector and selectand (ligand) may be identified, able 
to account for more intimate structural complementarities and particularities.  

 

Relationship between retention times and significant MDs 

The loading scatter plots convey information about the descriptors that 
are influential in the modelling of chromatographic parameters on columns IA, 
IB, IC and ID and how they are correlated. Among the descriptors showing a 
significant contribution to every predictive model are to be mentioned the 
surface area, volume and shape descriptors, number of heavy atoms, the 
sum of hydrogen bond donors and acceptors, the number of O and N atoms 
in the molecule, the entropy of element distribution, the van der Waals surface 
area and volume, molecular weight, molecular refractivity and polarizability, 
total polar surface area. 

Columns IA and ID are based on amylose, while IB and IC are based on 
cellulose derivatives. Moreover, column IA and IB only differ on the polysaccharide 
type backbone, but the substituent is the same, 3,5-dimethylphenylcarbamate. 
The particularities induced by the increasing number of halogen atoms on 
the substituents of Columns IC and ID (3,5-diclorophenylcarbamate on IC and 



MONA-MARIA TALMACIU, EDE BODOKI, JAMES PLATTS, RADU OPREAN 
 
 

 
108 

3-cloropehnylcarbamate on ID) may also be revealed. Without considering whether 
the correlation is positive or negative, two classes of descriptors exhibit by far the 
strongest contributions: the class of 3D descriptors that depend on surface area, 
volume and shape and the class of 2D partial charge descriptors. The first one 
registered contribution scores of 21.08% on Chiralpak IA, 32.62% on Chiralpak IB, 
30.68% on Chiralpak IC and 23.51% on Chiralpak ID. Correlating this information 
with the structures of chiral selectors, strong similarities in the percentage of 
contribution scores and the nature of polymeric backbone is to be identified (~20% 
on amylose and ~30% on cellulose based CSP, respectively). The second class 
of descriptors showed a greater contribution for columns IA and IC and slightly 
lower, but still significant for IB and ID. Medium contributions were observed for 
the classes of adjacency and distance matrix and atom count descriptors.  

Partial charge descriptors and surface area, volume and shape descriptors 
were the two classes of MD that exhibited the highest positive correlation to 
the chromatographic parameters. However, in case of the partial charge type, 
contribution can be seen only in case of columns IA and IB, while for IC and ID there 
is no visible contribution to the model. Columns IA and IB have distinct polymer 
backbone, but the same substituent, which could be accountable for the behaviour.  

A preferential behaviour of descriptors is also observed in case of 
MOPAC MDs, which for columns with cellulose-based polymer backbone 
correlate positively with the chromatographic parameters, while for amylose-
based columns the correlation is insignificant. From the distribution of contribution 
scores on each of the two cellulose-based columns, it results that on IC the 
heat of formation and total potential energy, which have values of over 1,5, are 
highly significant for the prediction model. For IB column, the highest contribution 
is exhibited by MNDO_dipole (~1). The difference between the two columns 
is the presence on column IC of two halogen atoms, suggesting that these could 
be responsible for the particular behaviour. While in case of column IC the 
total potential energy is a descriptor that significantly correlates in a positive 
way, the same descriptor, for the other columns, correlates negatively with the 
chromatographic parameters, registering values of contribution scores of over 2, 
rendering it extremely significant for the predictive model. In case of column IC 
the MOPAC descriptors that contribute negatively are the dipole moment and 
ionization potential. In case of columns IA, IB and ID the class of molecular 
descriptors with the strongest negative correlation with the chromatographic 
parameters was the partial charge descriptors, which contribute to the model 
9.9%, for IA, 15.26% for IB and 17.53% for ID. For column IC the contribution 
is significant, 22.99%, but its highest contribution is exhibited by the class of 
surface area, shape and volume 3D descriptors, with 30.68% of the entire model, 
compared to the other three columns which register values between 3% and 
7%. The surface area, shape and volume descriptors depend on structure 
connectivity and conformation. Our study revealed a particular behaviour in 
terms of the negative correlation with chromatographic parameters for column 
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IC, with regard to most classes of molecular descriptors. The only occurrence 
of lower negative correlation compared to the other three columns was seen 
for connectivity index descriptors, where column ID registered a percentage 
of 5.97, while for column IC it was 1.87 and the other two 0%. 

 
 

CONCLUSIONS 
 
Several approaches were tested in order to obtain useful information 

from the data obtained after descriptor calculation with MOE. The models 
obtained were tested and further refined by splitting the observations into 
calibration and validation sets. In the case of the external validation set, 
relatively close values of predicted retention times were obtained compared to 
the experimental ones. After PLS-Tree®, two main clusters of b-blockers were 
distinguished: the 1st containing oxprenolol, metoprolol, alprenolol, propranolol, 
pindolol and the 2nd group containing the remaining β-blocker representatives. 
Two classes of descriptors exhibit by far the strongest contributions: the class of 
3D descriptors that depend on surface area, volume and shape and the class 
of 2D partial charge descriptors.A preferential behaviour of descriptors is also 
observed in case of MOPAC MDs, which for columns with cellulose-based 
polymer backbone correlate positively with the chromatographic parameters, 
while for amylose-based columns the correlation is insignificant. 

Descriptors that exhibited significant contributions to the models, either 
positive or negative were H-bond donor and acceptor atoms, total potential energy, 
heat of formation, ionization potential, van der Waals surface area and volume, 
molecular weight, molecular refractivity and polarizability, total polar surface area. 

It is estimated that the predictive power of the models could be further 
improved by expanding the number of observations on the entire range of 
existing β-blockers as well as by feeding into the model 3D molecular descriptors 
derived from the used CSPs. Developing models able to correlate molecular 
descriptors of CSPs and of various chiral molecules of interest with their corresponding 
chromatographic parameters could rationalize the selection procedure of CSP during 
method development as well as further contribute towards the elucidation of the 
molecular interactions responsible for chiral separation. 

 
 

EXPERIMENTAL SECTION 
 

HPLC experiments 

All HPLC experiments were performed as described by Moldovan et al. 
[36]. The chromatographic behaviour (retention times, separation factors, capacity 
factors, resolutions) of the racemic mixtures of 14 β- blockers was studied by 
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gradient elution HPLC [36], with a mobile phase made up of 2-Propanol/n-Hexane 
with their ratio varying from 80/20 to 50/50 (v/v)) with 0.1% (v/v) additive (EA, 
DEA, EDA) added to 2-Propanol. 

 

Molecular Modeling and Geometry Optimization  

The 2D chemical structures of the β- blockers (14 molecules with one 
stereogenic centre) were downloaded from ChemicalBook, the chemistry of the 
structures was verified and then they were cleaned in 3D, using MarvinView 
Chemaxon). The chirality at the stereogenic centres was verified by applying the 
Cahn-Ingold-Prelog priority rules. Then the structures were preoptimized using 
MOPAC2012, by PM6 method. The resulting geometries were further refined by 
means of low mode dynamics (LMD) conformational search using the standard 
settings in MOE and MMFF94x force field to enforce low energy conformations of 
the molecules. The lowest energy conformer of all the compounds was transferred to 
database viewer and different classes of 2D and 3D descriptors were calculated.  

 

Generation of Descriptors  

A total of 340 2D and 3D descriptors were calculated for each conformation 
of each enantiomer with MOE and then the values corresponding to the conformation 
with the lowest energy were chosen. Calculations were performed with MOE 
(Molecular Operating Environment, v. 2014.09 on an Intel ® Core(TM) i3-4005U 
CPU @ 1.7 GHz personal computer with 12 GB of RAM running under Microsoft 
Windows 8.1). These data served as a basis for a further statistical analysis. 

 

Statistical Analysis 

The obtained chromatographic data and the calculated molecular descriptors 
were subjected to orthogonal partial least-squares (O2PLS) multivariate analysis 
using Simca-p+ v.13 software (MKS Data Analytics Solution, Sweden). The variables 
(K=340) building the X-block of data represented the molecular descriptors generated 
by MOE, derived from MOPAC calculation output and 2 qualitative variables/class 
identifiers (nature of column and type of additive), whereas the Y-block of data 
was made up by the chromatographic parameters (separation factor (α), retention 
time (tr), capacity factor (k’) and resolution (Rs)). 
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