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THEORETICAL STUDY OF NANOSTAR DENDRIMERS  

NAJMEH SOLEIMANIa,*, ESMAEEL MOHSENIb, SAHAR HELALBINb 

ABSTRACT. In this paper, we give some theoretical results about nanostar 
dendrimers by topological indices. Formulas for computing topological indices 
based on distance and degree in a graph such as eccentric connectivity, 
total eccentricity, fourth version of atom-bond connectivity and fifth version of 
geometric-arithmetic indices of two types of nanostar dendrimers are presented. 
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INTRODUCTION 

Dendrimers are large and complex molecules with well taylored 
chemical structures. There are numerous topological descriptors that have 
found applications in theoretical chemistry, particularly in QSPR/QSAR 
research [1]. Among them, topological indices have a prominent place. In 
some research papers [2-9], the authors have computed some topological 
indices of nanostar dendrimers, nanostructures and other graphs. 

In this paper, we discuss four topological descriptors, namely ߦ, ,ߠ  ହ indices for two types of nanostar dendrimers. The articleܣܩ  and	ସܥܤܣ
is organized as follows: whitin the second part of this work, we give the 
necessary definitions. Section 3 contains our main results. Conclusions and 
references will close this article. 
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DEFINITIONS 

Now, we introduce some notations and terminology which is needed 
for the rest of the paper. A molecular graph is a simple graph such that its 
vertices correspond to the atoms and the edges to the bonds of a molecule. 
Let ܩ = (ܸ,  be a simple molecular graph without directed and multiple (ܧ
edges and without loops, the vertex and edge sets of it are represented by ܸ = ܧ and (ܩ)ܸ =  respectively. The degree (i.e., the number of first ,(ܩ)ܧ
neighbors) of a vertex ݑ ∈  The edge connecting .(ݑ)ீ݃݁݀	is denoted by (ܩ)ܸ
the vertices ݑ and ݒ is denoted by	ݒݑ. The distance between ݑ and ݒ in	ܸ(ܩ), ݀(ݑ,  its (ܩ)ܸ of ݑ For a vertex .ܩ path in ݒ_ݑ is the length of a shortest ,(ݒ
eccentricity (ݑ)ீߝ is the largest distance between ݑ and any other vertex ݒ of (ݑ)ீߝ ,ܩ = ,ݑ)ሼ݀ݔܽ݉ ݒ	|(ݒ ∈  The maximum and minimum eccentricity .{(ܩ)ܸ
over all vertices of ܩ are called the diameter and radius of ܩ and denoted by ݀(ܩ), (ܩ)ݎ respectively. In 2011, Doslić et al. [10], have proposed the eccentric 
connectivity polynomial. This polynomial is defined as follows: ߦ(ܩ, (ݔ =  (ீ)ఌಸ(௨)௨∈ݔ(ݑ)ீ݃݁݀ , 
where ݔ is a dummy variable. A topological index is a real number derived 
from molecular graphs of chemical compounds. The oldest topological index is 
the Wiener index, introduced by Harold Wiener [11]. The eccentric-connectivity 
index of the molecular graph ߦ ,ܩ(ܩ), was proposed by Sharma et al. [12]. It 
is easy to see that the eccentric-connectivity index of a graph can be obtained 
from the corresponding polynomials by evaluating its first derivative, at ݔ = 1. 
The eccentric and total connectivity indices of	ܩ are defined as follows: ߦ(ܩ) =  degீ(ݑ)(ݑ)ீߝ௨∈(ீ) , (ܩ)ߠ =  (ீ)௨∈.(ݑ)ீߝ  

We encourage readers to references [13–15] to study some properties 
of eccentric-connectivity index of some nanostructures. 

Among topological connectivity indices, the atom-bond connectivity 
 index are of great importance. For (ܣܩ) index and geometric-arithmetic (ܥܤܣ)
other studies on these topological indices, we suggest refs. [16,17]. In 2010, 
Ghorbani et al. [18] introduced a new version of atom-bond connectivity (ܥܤܣସ) 
index. It is defined as follows: 

(ܩ)ସܥܤܣ =  ඨܵ௨+ܵ௩ − 2ܵ௨ܵ௩௨௩∈ா(ீ) , 
where ܵ௨	is the sum of degrees of all vertices adjacent to vertex ݑ. In other 
words, 	ܵ௨ = ∑ degீ(ݒ)௩∈ேಸ(௨)   and ீܰ(ݑ) = ሼݒ ∈ ݒݑ|(ܩ)ܸ ∈   .{(ܩ)ܧ
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Recently a fifth version of geometric-arithmetic (ܣܩହ) index is 
proposed by Graovac et al. [19] in 2011, as follows: ܣܩହ(ܩ) =  2ඥܵ௨ܵ௩ܵ௨ + ܵ௩௨௩∈ா(ீ) . 
RESULTS AND DISCUSSION 

The main aim of this section is to compute the eccentric-connectivity 
polynomial, eccentric-connectivity, total eccentricity, fourth version of atom-bond 
connectivity and fifth version of geometric-arithmetic indices of the molecular 
graph of two types of nanostar dendrimers (see Figure 1). In this paper, ܦଵ[݊] 
and ܦଶ[݊]	denotes the ݊୲୦ growth of nanostar dendrimer for every infinite 
integer ݊. For background materials, see references [20, 21].  

Figure 1. First generation of diphenylazomethine dendrimer (left) and Wang’s 
Helicene-based dendrimers (right). 

Calculation of polynomials and topological Indices 

Before we proceed to our main results, we explain the examples 
which will be further used. 

Example 1. Let us consider the first kind of nanostar dendrimer, of 
which grown 1 − 3 steps are denoted by ܦଵ[݊] for ݊ = 1, 2, 3.  

Obviously, for ݊ = 1, |ܸ| = 34 and |ܧ| = 38. The eccentric-connectivity 
polynomial is equal to: ߦ(ܦଵ[1], (ݔ = ଵହݔ8 + ଵସݔ16 + ଵଷݔ16 + ଵଶݔ12 + ଵଵݔ6 + ଵݔ4 + ଽݔ6 +  .଼ݔ8
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Figure 2. The molecular graph of ܦଵ[݊] for  ݊ = 1. 

For  ݊ = 2, |ܸ| = 90 and  |ܧ| 	= 102. The eccentric-connectivity polynomial 
is equal to:  ߦ(ܦଵ[2], (ݔ = ଶݔ16 + ଶݔ32 + ଶହݔ32 + ଶସݔ24 + ଶଷݔ12 + ଶଶݔ8 + ଶଵݔ12 + ଵଽݔ16	+		 ଶݔ16 + ଵ଼ݔ12 + ଵݔ6 + ଵݔ4 + ଵହݔ6 +  .ଵସݔ8

Figure 3. The molecular graph of ܦଵ[݊] for 	݊ = 2. 
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 Also, for ݊ = 3, |V| = 202  and |E| = 230. The eccentric-connectivity 
polynomial is equal to:  ߦ(ܦଵ[3], (ݔ = ଷଽݔ32 + ଷ଼ݔ64 + ଷݔ64 + ଷݔ48 + ଷହݔ24 + ଷସݔ16 + ଷଷݔ24 + ଷଵݔ+32			 ଷଶݔ32 	+ ଷݔ24	 	+ ଶଽݔ12 + ଶ଼ݔ8 + ଶݔ12 + ଶݔ16 + ଶହݔ16 + ଶଷݔଶସ +6ݔ12 + ଶଶݔ4 + ଶଵݔ6 +  .ଶݔ8

Figure 4. The molecular graph of ܦଵ[݊] for  ݊ = 3. 

Using calculations given above, it is possible to evaluate the eccentric- 
connectivity polynomial of this class of nanostar dendrimers. 

Theorem 2. The eccentric-connectivity polynomial of the nanostar 
dendrimer ܦଵ[݊] for ݊ ≥ 1	is given by the formula: 

,[݊]ଵܦ)ߦ (ݔ = 2ାଶ	ݔଵଶାଷ + 2ାଷ	ݔଵଶାଶ +2(8ݔ(ା)ାଵ
ୀଵ + (ା)ݔ6 				+ (ା)ିଵݔ3 + (ା)ିଶݔ2 + (ା)ିଷݔ3 +  .((ା)ିସݔ4
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Proof. To prove the theorem, we apply induction on ݊. By considering 
the general form of this graph, |ܸ(ܦଵ[݊])| = 28 × 2 − 22 and |ܧ(ܦଵ[݊])| =32 × 2 − 26. We compute maximum vertex eccentric connectivity and 
minimum vertex eccentric connectivity for nanostar dendrimer graph ܦଵ[݊]. 
For	ݑ ∈ ([݊]ଵܦ)݀ we have ,([݊]ଵܦ)ܸ = 12݊ + 3 and ݎ(ܦଵ[݊]) = 6݊ + 2. The 
degrees, frequencies and eccentricities of these vertices are listed in Table 1. 

Table 1. The representatives of vertices of ܦଵ[݊] with their degree, 
eccentricity and frequency of occurrence, for 1 ≤ ݇ ≤ ݊. 

Frequency Eccentricity Degree Vertex type 2ାଵ	 12݊ + 3 2 1 2ାଶ	 12݊ + 2 2 2 2ାଶ 6݊ + 6݇ + 1 2 3 2ାଵ 6݊ + 6݇ 3 4 2 6݊ + 6݇ − 1 3 5 2 6݊ + 6݇ − 2 2 6 2 6݊ + 6݇ − 3 3 7 2ାଵ 6݊ + 6݇ − 4 2 8 

By using data in Table 1 and definition of eccentric-connectivity 
polynomial calculation may be achieved. 

From Theorem 2, it is possible to calculate the eccentric-connectivity 
index of these nanostar dendrimers. We have:

Theorem 3. The eccentric-connectivity index of ܦଵ[݊]	for ݊ ≥ 1 is 
computed as follows: ߦ(ܦଵ[݊]) = 2(768݊ − 332) − 312݊ + 360. 

Proof. From the definition, we have ߦ(ܦଵ[݊]) = డ൫క(భ[],௫)൯డ௫ |௫ୀଵ.  
Thus: ߦ(ܦଵ[݊]) = 2ାଶ	(12݊ + 3) + 2ାଷ (12݊ + 2) 		+2

ୀଵ ቀ൫8(6(݊ + ݇) + 1)൯ + 6(6(݊ + ݇)) + ൫3(6(݊ + ݇) − 1)൯					+൫2(6(݊ + ݇) − 2)൯ + ൫3(6(݊ + ݇) − 3)൯ + ൫4(6(݊ + ݇) − 4)൯ቁ				= 2(768݊ − 332) − 312݊ + 360.
Theorem 4. The total eccentricity index of ܦଵ[݊]	for ݊ ≥ 1	is computed 

as follows: ([݊]ଵܦ)ߠ = 2(336݊ − 138) − 132݊ + 152.
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Proof. The total eccentricity index of a graph is the sum of eccentricities 
of all the vertices. Therefore by the calculations given in Table 1, the theorem 
is proved. 

Theorem 5. The fourth atom-bond connectivity index of ܦଵ[݊] for ݊ ≥ 1		is 
computed as follows: ܥܤܣସ(ܦଵ[݊]) = 4355257157954373 × 2 ା ଶ1125899906842624 + 4625405229014641 × 22251799813685248	−	3896323959238067281474976710656 . 

Proof. Let ܦଵ[݊] be the graph of first kind of nanostar dendrimer. We 
compute the edge partition of ܦଵ[݊]	based on the degree sum of neighbors of 
end vertices of each edge (Table 2). 

Table 2. The edge partition of ܦଵ[݊] based on the degree sum 
of neighbors of the end vertices of each edge. (ܵ௨, ܵ௩) ݒݑ ∈ ,No. edges (ܵ௨ ([݊]ଵܦ)ܧ ܵ௩) ݒݑ ∈ No. edges (4,4) 2ାଶ (8,6) 2ାଵ ([݊]ଵܦ)ܧ − 2 (5,4) 2ାଶ (6,6) 2ାଵ − 2 (7,5) 2ାଷ − 8 (6,5) 2ାଶ − 4 (7,8) 2ାଶ − 4 (5,5) 2ାଶ − 6 

Now, we use this partition to compute ܥܤܣସ index of ܦଵ[݊].  
([݊]ଵܦ)ସܥܤܣ =  ඨܵ௨+ܵ௩ − 2ܵ௨ܵ௩௨௩∈ா(భ[])= 2ାଶඨ4 + 4 − 24 × 4 + 2ାଶඨ5 + 4 − 25 × 4 + (2ାଷ − 8)ඨ7 + 5 − 27 × 5

+(2ାଶ − 4)ඨ7 + 8 − 27 × 8
+(2ାଵ − 2)ඨ8 + 6 − 28 × 6 + (2ାଵ − 2)ඨ6 + 6 − 26 × 6 + (2ାଶ − 4)ඨ6 + 5 − 26 × 5
+(2ାଶ − 6)ඨ5 + 5 − 25 × 5 . 
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After an easy simplification, we get ܥܤܣସ(ܦଵ[݊]) = 2ାଶ ቀ√ଷହା√ଷାସ√ଶଵ + ଵସ√ାଵ√ଵସା√ଶ଼ହ ቁ + 2 ቀଷା√ଵଷ ቁ  −ቀାଶ√ଵ + ସ√ଷାଶସ√ଶଵ + √ଶ଼ାଵ√ଵସଵସ ቁ  = 4355257157954373 × 2 ା ଶ1125899906842624 + 4625405229014641 × 22251799813685248	−	3896323959238067281474976710656 , 
which proves the theorem. 

Theorem 6. The fifth geometric-arithmetic index of ܦଵ[݊] for ݊ ≥ 1	is 
computed as follows: ܣܩହ(ܦଵ[݊]) = 2238947875180617 × 2 ା ଶ281474976710656 − 3636956611970403140737488355328 .	

Proof. By using definition of ܣܩହ index and Table 2, one can see that: ܣܩହ(ܦଵ[݊]) =  2ඥܵ௨ܵ௩ܵ௨ + ܵ௩௨௩∈ா(భ[])= 2ାଶ ଶ√ସ×ସସାସ + 2ାଶ ଶ√ହ×ସହାସ + (2ାଷ − 8) ଶ√×ହାହ + (2ାଶ − 4) ଶ√×଼ା଼   +(2ାଵ − 2) ଶ√଼×଼ା + (2ାଵ − 2) ଶ√×ା + (2ାଶ − 4) ଶ√×ହାହ + (2ାଶ − 6) ଶ√ହ×ହହାହ .  
After a bit calculation, we get ܣܩହ(ܦଵ[݊]) = 2ାଶ ቆ4√5 + 3√359 + 75 + 8√1430 + 22√3 + 14√3077 ቇ 

		− ቆ120 + 20√35 + 16√1415 + 88√3 + 56√3077 ቇ 

= 2238947875180617 × 2 ା ଶ281474976710656 − 3636956611970403140737488355328 , 
that proves our theorem. 
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Example 7. We consider now the second kind of nanostar dendrimer, 
with the grown 1 − 3 steps denoted by ܦଶ[݊] for ݊ = 1, 2, 3. 

Obviously, for ݊ = 1, |ܸ| = 28  and |ܧ| = 33. The eccentric-connectivity 
polynomial is equal to: ߦ(ܦଶ[1], (ݔ = ଽݔ7 + ଼ݔ21 + ݔ20 + ݔ12 +  .ହݔ6

Figure 5. The molecular graph of ܦଶ[݊] for  ݊ = 1. 

For ݊ = 2, |ܸ| = 82 and |ܧ| = 99. The eccentric-connectivity polynomial 
is equal to: ߦ(ܦଶ[2], (ݔ = ଶݔ8 + ଶݔ16 + ଶହݔ20 + ଶସݔ20 + ଶଷݔ20 + ଶଶݔ12 + ଶݔ+12		 	ଶଵݔ16 + ଵଽݔ6 + ଵ଼ݔ9 + ଵݔ21 + ଵݔ20 + ଵହݔ12 +  .ଵସݔ6

Figure 6. The molecular graph of ܦଶ[݊] for  ݊ = 2. 
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Also, for ݊ = 3, |ܸ| = 190 and |ܧ| 	= 231. The eccentric-connectivity 
polynomial is equal to: ߦ(ܦଶ[3], (ݔ = ସହݔ16 + ସସݔ32	 + ସଷݔ40 + ସଶݔ40 + ସଵݔ40 + ସݔ24 + + ଷଽݔ32	 ଷ଼ݔ24 + ଷݔ12 + ଷݔ12 + ଷହݔ16 + ଷସݔ20 + ଷଷݔ20 + ଷଵݔ+12			ଷଶݔ20 + ଷݔ16	 + ଶଽݔ12 + ଶ଼ݔ6 + ଶݔ9 + ଶݔ21 + + 	ଶହݔ20	 ଶସݔ12 +  .ଶଷݔ6	

Figure 7. The molecular graph of ܦଶ[݊] for  ݊ = 3. 
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Similar to the proof of Theorem 2, we can prove the following theorem: 

Theorem 8. The eccentric-connectivity polynomial of the nanostar 
dendrimer ܦଶ[݊]	for ݊ ≥ 3 is computed as follows: ߦ(ܦଶ[݊], (ݔ = 	2	ାଵ	ݔଵ଼ିଽ + ଽݔ9 + ଽିଵݔ21 + ଽିଶݔ20 + ଽିଷݔ12 + +	 ଽିସݔ6 2(8ݔଽ(ା)ିଵିଵ

ୀଵ + ଽ(ା)ିଶݔ10 + ଽ(ା)ିଷݔ10 +  ଽ(ା)ିସݔ10

ଽ(ା)ିହݔ6	+   + ଽ(ା)ିݔ8 + ଽ(ା)ିݔ6 + +	 ଽ(ା)ି଼)ݔ3 2(6ݔଽ(ା))ିଶ
ୀଵ  

Proof. Using a simple calculation, one can show that |ܸ(ܦଶ[݊])| =27 × 2 − 26 and |ܧ(ܦଶ[݊])| = 33 × 2 − 33. For ݑ ∈ ([݊]ଶܦ)݀ we have ,([݊]ଶܦ)ܸ = 18݊ − 9 and ݎ(ܦଶ[݊]) = 9݊ − 4. By considering the general form 
of this second nanostar dendrimer, we can fill the Table 3. By using data in 
this table the proof is straightforward. 

Table 3. The representatives of vertices of ܦଶ[݊] with their degre, eccentricity and 
frequency of occurrence, for 1 ≤ ݇ ≤ ݊ − 1 and ݊ ≥ 3. 

Frequency Eccentricity Degree Vertex type 2	18݊ − 921 29݊32 39݊13 39݊ − 1 34 69݊ − 1 25 49݊ − 236 49݊ − 227 49݊ − 338 29݊ − 439 2ାଶ 9݊ + 9݇ − 1 210 2ାଵ 9݊ + 9݇ − 2 311 2ାଵ 9݊ + 9݇ − 2 212 2ାଵ 9݊ + 9݇ − 3313 2ାଵ 9݊ + 9݇ − 3 214 2ାଵ 9݊ + 9݇ − 4 315 2ାଵ 9݊ + 9݇ − 4 216 2ାଵ 9݊ + 9݇ − 5 317 
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Frequency Eccentricity Degree Vertex type 2ାଵ 9݊ + 9݇ − 6 318 2ାଵ 9݊ + 9݇ − 6 119 2ାଵ 9݊ + 9݇ − 7 320 2 9݊ + 9݇ − 8 321 2ାଵିଶ
ୀଵ  9݊ + 9݇ିଶ

ୀଵ  
322 

By Table 3 and some simple calculations by MATLAB, we can prove 
the following theorem: 

Theorem 9. The eccentric-connectivity index and total eccentricity 
index of ܦଶ[݊] for ݊ ≥ 1 are computed as follows: ߦ(ܦଶ[݊]) = 2(1188݊ − 1439) − 594݊ + ([݊]ଶܦ)ߠ ,1569 = 2(486݊ − 582) − 234݊ + 633. 

Theorem 10. The fourth atom-bond connectivity index and fifth 
geometric-arithmetic index of ܦଶ[݊]	for ݊ ≥ 1 are computed as: ܣܩହ(ܦଶ[݊]) = 286724064989901 × 28796093022208 − 229846593107822970368744177664 ([݊]ଶܦ)ସܥܤܣ . = 	 ଶ√ଶ(ଷ×ଶ ି ସ)ହ + ଵଶଶଷଽଷଶସଽଶହ×ଶଷ଼ସସଵସ − ଶହଵ଼ଷଶଵଶଽହଽଵହଽଶଵ଼ସସସଵ . 

Proof. These results are proven like Theorem 5 and Theorem 6 therefore, 
we omit the proofs. 

Table 4. The edge partition of ܦଶ[݊] based on the degree sum 
of neighbors of the end vertices of each edge. (ܵ௨, ܵ௩) ݒݑ ∈ ,No. edges (ܵ௨ ([݊]ଶܦ)ܧ ܵ௩) ݒݑ ∈ No. edges (3,7) 2ାଵ ([݊]ଶܦ)ܧ − 1 (5,5) 3 × 2 − 4 (7,7) 2 (5,7) 4(2 − 1) (7,9) 5(2) − 8 (4,5) 2ାଵ (9,9) 2ାଵ − 2 (4,4) 2 (9,8) 6(2 − 1) (7,8) 2ାଵ − 2 (8,5) 4(2 − 1) (6,7) 4(2ିଵ − 1) 
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CONCLUSIONS 

Among topological descriptors, topological indices are very important 
and they play a prominent role in Mathematical Chemistry. In this paper, we 
studied the nanostar dendrimers. As main results, we derived exact formulas 
for the eccentric-connectivity index, total eccentricity index, fourth version of 
atom-bond connectivity index and fifth version of geometric-arithmetic index 
of two types of nanostar dendrimers. 
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