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ABSTRACT. In this paper, we present graph theoretical methods to 
compute several vertex-eccentricity-based molecular descriptors such as the 
eccentric connectivity index, total eccentricity, average eccentricity and first 
and second Zagreb eccentricity indices for the generalized and ordinary 
Bethe trees and some dendrimer graphs. Also, we study the behavior of 
these descriptors under the rooted product of graphs and apply our results to 
compute these indices for some classes of molecular graphs, designed by 
attaching copies of ordinary Bethe trees to paths and cycles.  
 
Keywords: Vertex eccentricity, Molecular descriptor, Molecular graph, 
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INTRODUCTION  

 
Chemical graph theory is a branch of mathematical chemistry dealing 

with the study of chemical graphs [1]. Chemical graphs, particularly molecular 
graphs, are models of molecules in which atoms are represented by vertices 
and chemical bonds by edges of a graph. Physico-chemical or biological 
properties of molecules can be predicted by using the information encoded in 
the molecular graphs, eventually translated in the adjacency or connectivity 
matrix associated to these graphs. This paradigm is achieved by considering 
various graph theoretical invariants of molecular graphs (also known as 
topological indices, molecular descriptors, etc.) and evaluating how strongly 
are they correlated with various molecular properties. In this way, chemical 
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graph theory plays an important role in mathematical foundation of QSAR and 
QSPR research. A graph invariant is any function calculated on a molecular 
graph, irrespective of the labeling of its vertices. Many invariants have been 
proposed and employed to date with various degrees of success in 
QSAR/QSPR studies. We refer the reader to consult the monographs [1,2]. 

In the recent years, some invariants based on vertex eccentricity such 
as eccentric connectivity index [3], total eccentricity, average eccentricity [4], 
and first and second Zagreb eccentricity indices [5] have attracted much 
attention in chemistry. These invariants are successfully used for mathematical 
modeling of biological activity of diverse nature [6-8]. They were also proposed 
as a measure of branching in alkanes [9]. 

Dendrimers are highly ordered hyper-branched molecular structures 
[10-12] reaching the nano-dimensions. The end-groups (the pendant groups 
reaching the outer periphery) can be functionalized, thus modifying their 
physico-chemical or biological properties. Dendrimers have gained a wide 
range of applications in supra-molecular chemistry, particularly in catalysis, host-
guest reactions, and self-assembly processes [13,14]. Promising applications 
come to cancer therapy [15] but their applications are unlimited.  

In this paper, we present graph theoretical methods to compute these 
descriptors for generalized and ordinary Bethe trees and several classes of 
molecular graphs and dendrimers derived from them.  

 
 

DEFINITIONS AND PRELIMINARIES 
 
Let G be a simple connected graph with vertex set V(G) and edge set 

E(G). The degree dG(u) of a vertex u∊V(G) is the number of first neighbors of 
u in G. The (topological) distance dG(u,v) between the vertices u,v∊V(G) is 
defined as the length of any shortest path in G connecting u and v. The 
eccentricity εG(u) of a vertex u is the largest distance between u and any 
other vertex v of G, εG(u)=max{dG(u,v);v∊V(G)}. 

The best known and widely used topological index is the Wiener 
index, W, introduced in 1947 by Wiener [16], who used it for modeling the 
thermodynamic properties of alkanes. The Wiener index of a molecular 
graph G represents the sum of topological distances between all pairs of 
atoms/vertices of G. Details on the Wiener index can be found in [17-20]. 

Zagreb indices are among the oldest topological indices, and were 
introduced in 1972 by Gutman and Trinajstić [21] within the study about the 
dependence of total π-electron energy of molecular structures. The first and 
the second Zagreb indices of a graph G, M1(G) and M2(G), respectively, are 
defined as:  
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The eccentric connectivity index ξ(G) was introduced by Sharma  
et al. [3] in 1997; it is defined as: 
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It is sometimes interesting to consider the sum of eccentricities of all 
vertices of a given graph G. This quantity is called the total eccentricity of G 
and denoted by ζ(G).  

The average eccentricity [4] of G is denoted by η(G) and defined as:  
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The Zagreb eccentricity indices were introduced by Vukičević and 
Graovac [5] in 2010. They are defined, analogously to the Zagreb indices, by 
replacing the vertex degree with the vertex eccentricity, as: 
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RESULTS AND DISCUSSION 

 
Let us compute some vertex-eccentricity-based invariants for path 

and cycle. The results follow easily by direct calculations, so the proofs are 
omitted. 

 
Lemma 1. Let Pn and Cn denote the n-vertex path and cycle, 

respectively.  
 
(i) If n is even, then  
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(ii) For every n≥3, 
 






2

2)(
n

nCnξ , 




2

)(
n

nCnζ , 




2

)(
n

Cnη , 
2

21 2
)()( 




n

nCC nn ξξ .  

 
A generalized Bethe tree [22] of k levels, k>1, is a rooted tree in 

which vertices lying at the same level have the same degree (Figure 1). 
The level of a vertex in a rooted tree equals its distance from the root vertex 
plus one. 

Let Bk be a generalized Bethe tree of k levels. For i=1,2,..,k, let dk-i+1 

and nk-i+1 denote the degree of the vertices at the level i of Bk and their 
number, respectively. Also, suppose ek = dk and ei = di -1 for I =1,2,…,k-1.  

 

 
 

Figure 1. A generalized Bethe tree of 4 levels. 
 
In the following theorem, some vertex-eccentricity-based invariants of 

the generalized Bethe tree Bk are computed. 

Theorem 2. Let Bk be a generalized Bethe tree whose root vertex 
has degree dk>1. Then 
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Proof. We just prove parts (i) and (v); other parts can be proven 
similarly. To prove part (i), let v be an arbitrary vertex of the level k-i+1 of Bk, 
where 1≤i≤k. It is easy to see that, εBk(v)=(k-i)+(k-1)=2k-1-i. So, 
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On the other hand, the number of vertices of the level k-i+1 is equal to 
ni=ni+1ei+1, 1≤i≤k-1. Thus, 
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Now using (1), we can get the formula for ξ(Bk). To prove part (v), let  Ek-i+1, 
2≤i≤k, denote the set of all edges of Bk which connect vertices of the level k-
i+1 and level k-i+2 of Bk. It is easy to see that,  
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and if uv∊Ek-i+1, then εBk(u)εBk(v)=(2k-1-i)(2k-i). Now, by definition of the 
second Zagreb eccentricity index, we can get the formula for ξ2(Bk).  

The ordinary Bethe tree Bd,k is a rooted tree of k levels whose root 
vertex has degree d, the vertices from levels 2 to k-1 have degree d+1 and 
the vertices at level k have degree 1 (Figure 2). Note that B1,k=Pk and 
Bd,2=Sd+1.  

 
 

Figure 2. The ordinary Bethe tree B2,4. 
 

Using Theorem 2, we easily arrive at: 
Corollary 3. For the ordinary Bethe tree Bd,k with d>1, we have:   
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(ii)
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A dendrimer tree Td,k [23] is a rooted tree having the degree of its 
non-pendent vertices equal to d and the distance between the root (central) 
vertex and the pendent vertices equal to k (Figure 3). Thus, Td,k can be seen 
as a generalized Bethe tree with k+1 levels and the non-pendent vertices 
have the same degree. Note that T2,k = P2k+1 and Td,1 = Sd+1.  

 

 
 

Figure 3. The dendrimer tree T4,3. 
 
 
Using Theorem 2, we easily arrive at: 
 

Corollary 4. For the dendrimer tree Td,k with d>1, we have:   
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The formula of part (i) of Corollary 4 has also been obtained in [24].  

Now, we introduce a class of dendrimers constructed from copies of 
ordinary Bethe trees. This molecular structure can be encountered in real 
chemistry, e.g. in some tertiary phosphine dendrimers. Let D0 be the graph 
depicted in Figure 4. For d,k>0, let Dd,k be a series of dendrimers obtained by 
attaching d pendent vertices to each pendent vertex of Dd,k-1 and let Dd,0=D0. 
Some examples of these graphs are shown in Figure 5.  

 

 
 

Figure 4. The dendrimer graph D0 with a numbering for its vertices. 
 

 
 

Figure 5. Dendrimer graphs
 
D2,k, for k=1,2,3. 
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We can also introduce the dendrimer graph Dd,k as the graph obtained 
by identifying the root vertex of the ordinary Bethe tree Bd,k+1 with all three 
pendant vertices of the graph D0. In the following theorem, some vertex-
eccentricity-based invariants of the dendrimer graph Dd,k are calculated. 
 

Theorem 5. For the dendrimer graph Dd,k with k≥0, we have: 

(i)
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Proof. Consider a subgraph of Dd,k isomorphic to the graph D0 and 
choose a numbering for its vertices as shown in Figure 4. It is easy to see 
that: 

3)6()4()1(
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Now, let G be a subgraph of Dd,k isomorphic to the ordinary Bethe tree Bd,k+1 
and let v be an arbitrary vertex of the level i, 1≤i≤k+1 of G. Then 

ikkiv
kdD  34)1()(
,

ε , 

and the number of vertices of this level is equal to di-1. Next, using the 
definition of the eccentric connectivity index, total eccentricity, average 
eccentricity, and Zagreb eccentricity indices, the proof is obvious. 

Let now consider two other molecular graphs constructed from copies 
of the ordinary Bethe tree Bd,k and compute some of their vertex-eccentricity-
based invariants. Recall that the rooted product G1{G2} of simple connected 
graphs G1 and G2 is the graph obtained by taking one copy of G1 and |V(G1)| 
copies of the rooted graph G2, and identifying the root vertex of the i-th copy 
of G2 with the i-th vertex of G1, for i=1,2,…, |V(G1)|. More about topological 
indices of rooted product of graphs can be found in [25-29]. In what follows, 
we denote the root vertex of G2 by w, and the copy of G2 whose root is 
identified with the vertex u∊V(G1) by G2,u. The degree of a vertex x of G1{G2} 
is calculated as:  
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Also, if x∊V(G2,u) then the eccentricity of the vertex x is: 
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Let G be a simple connected graph and u∊V(G). In order to express 
our next formulas in more compact forms, we introduce some quantities 
related to graph G as follows: 
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In the following lemma, we compute the above quantities in case G is 
the ordinary Bethe tree Bd,k and u is its root vertex. The proof follows 
immediately from definitions, so is omitted. 

Lemma 6. Let w denote the root vertex of Bd,k. Then 
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In the following theorem, some vertex-eccentricity-based invariants of 
the rooted product G1{G2} are computed. 

Theorem 7. Let G1 and G2 be simple connected graphs with 
|V(Gi)|=ni, |E(Gi)|=mi, 1≤i≤2, and let the copies of G2 used in the construction 
of G1{G2}  be rooted in w. Then 
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Proof. We prove part (i); other parts can be proven similarly.  
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Denote by P(d,k,n), the tree obtained by attaching the root vertex of 
Bd,k to the vertices of Pn (Figure 6 and ref. [30]).  

 
Figure 6. The chemical tree P(2,4,4). 

 
The graph P(d,k,n) can be considered as the rooted product of Pn  

and Bd,k. So, we can apply Theorem 7 and Lemmas 1 and 6 to get the 
formulas for the eccentric connectivity index, total eccentricity, average 
eccentricity, and Zagreb eccentricity indices of P(d,k,n). 

Corollary 8. For the tree P(d,k,n) with d>1, the following hold:   
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(ii) If n is even, then  
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and if n is odd, then 














2

1

1

1

2
2 ]))1(

4

)13)(1(
)(1[()),,((

k

i

i
k

i

i idnkn
nn

ddinnkdPξ
   

            12

)327)(1(
[

2 


nnn 








1

1

2 ])1(
2

)13)(1)(1( k

i

idkn
nnk

 

            
)]2(

4

)13)(1(
[)1( 1 


  kn

nn
dk k

12

)3147)(1( 2 


nnn

                

                   
2

2

)1)(1(
2

)1)(1(3



 kn

nk
.
 

 
Denote by C(d,k,n), the dendrimer graph obtained by attaching the 

root vertex of Bd,k to the vertices of Cn (Figure 7 and ref. [22]). It is easy to 
see that, C(d,k,n) is the rooted product of Cn and Bd,k. So, using Theorem 7, 
and Lemmas 1 and 6, we get the following results for C(d,k,n). 

 
 

Figure 7. The dendrimer graph C(2,4,4). 
 
 

Corollary 9. For the dendrimer graph C(d,k,n) with d>1, we have:   
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(iv)
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CONCLUSIONS 

 
In this paper, we performed a topological study on several molecular 

graphs constructed from copies of Bethe trees, by applying graph theoretical 
methods, to obtain explicit formulas for calculation of the eccentric connectivity 
index, total eccentricity, average eccentricity, and first and second Zagreb 
eccentricity indices of these structures. These descriptors can be used in 
topological analysis of enzymes (in general, proteins) to identify structural 
similarities and ways of reactions. 
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