
STUDIA UBB CHEMIA, LXII, 2,Tom II, 2017 (p. 297-310) 
(RECOMMENDED CITATION) 
DOI:10.24193/subbchem.2017.2.23 
 
 
 
 

 
 

ENTROPY PREDICTION OF BENZENE DERIVATIVES  
USING TOPOLOGICAL INDICES  

 
 

HOSSEIN HOSSEINI and FATEMEH SHAFIEIa* 
 
 

ABSTRACT. In this study, a QSPR study relating topological indices to the 
entropy of 69 benzene derivatives is reported. The entropy values were 
calculated at HF level of theory (6-31 G basis sets) by Gussian 98. 

Multiple linear regression (MLR) provided good models with three to 
seven independent variables. The best model obtained is based on three 
descriptors: Randić, Wiener and Szeged topological indices 
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INTRODUCTION 

 
One of the most important purposes in application of mathematical 

and statistical methods is to find a relationship between molecular structure 
and values of physical properties, chemical reactivity or biological activity. As 
a result, quantitive structure-property relationship (QSPR) and quantitative 
structure-activity (QSAR) studies have been promoted. 

Topological indices (TIs), as molecular descriptors, are important tools 
in QSPR/QSAR studies [1-11]. A topological index is a graph invariant number 
calculated from a graph representing a molecule. 

The physicochemical properties of compounds are important in many 
fields, including pharmaceutics, chemistry, biochemistry and environmental 
sciences. Property estimations can help to minimize time and cost in producing 
new chemical materials with desired properties. 
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Predictive methods for estimating thermodynamic properties, such as 
enthalpies of formation, Gibbs free energy and entropies of acyclic and 
aromatic compounds, on the basis of fundamental concepts on molecular 
structure have been reported [12]. 

Artificial Neural Networks were also used in developing QSPR models 
for prediction of physicochemical properties [13-16]. 

Prediction of entropies and enthalpies of organic compounds by using 
group contribution methods was also published [17-19]. Prediction of standard 
absolute entropy (S298 K) of gaseous organic and inorganic compounds was 
reported in [20, 21]. 

In thermodynamics, entropy (usual symbol S) is a measurement of 
the randomness or disorder of a system. 

In the present work, we developed QSPR models for entropy 
estimation of benzene derivatives by describing the chemical structure by the 
aid of topological indices. Benzene derivatives are used in a wide range of 
technological applications. 

Experimental data of benzene derivatives are often scarce, and at 
this point, topological descriptors provide powerful tools for modeling and 
extrapolating experimental data. 
 The main aim of this study is to illustrate the usefulness of topological 
indices in QSPR study of entropy (S) of benzene derivatives. As far as we 
are aware, this is the first QSPR study for prediction of benzene derivatives 
entropies using topological indices. 

 
 

METHODS 
 
The entropy(S) of 69 benzene derivatives (benzene included) was 

computed at the Hartree-Fock (HF) level of theory, using the ab initio 6-31G 
basis sets. The benzene derivatives in this set have seven different substituents, 
each substituent being present in at least six compounds. These substituents 
are amino, bromo, chloro, hydroxyl, methyl, methoxyl and nitro groups. Studied 
benzene derivatives and their entropy are listed in Table 1. To obtain an 
appropriate QSPR model we used multiple linear regression (MLR) procedure, 
by SPSS software, version 16, and backward stepwise regression was used 
to construct the QSPR models. 

For drawing the graphs of our results, we used the Microsoft Office 
Excel – 2003 program. 
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Table 1. Benzene derivatives and their entropy. 
 

Compounds  
S 

(J/molK) 
Compounds  

S 
(J/molK) 

Bromobenzene 1 317.84 4-Methylphenol 36 349.83 

Phenol 2 306.46 
4-Methyl-3,5-
dinitroaniline 

37 445.05 

1,2-Dichlorobenzene 3 334.59 1,3,5-Trichlorobenzene 38 356.02 
3-Chlorotoluene 4 364.05 Benzene 39 262.97 

1,3-Dihydroxybenzene 5 323.62 2-Nitrotoluene 40 367.64 
3-Hydroxyanisol 6 358.77 1,4-Dinitrobenzene 41 388.62 

4-Methyl-3-nitroaniline 7 394.75 
2-Methyl-3,6-
dinitroaniline 

42 441.44 

2,4-Dimethylphenol 8 379.11 
2-Methyl-4,6-
dinitrophenol 

43 441.14 

2,6-Dimethylphenol 9 368.01 2,5-Dinitrotoluene 44 425.34 
3-Nitrotoluene 10 380.02 1,2-Dinitrobenzene 45 353.05 

2,6-Dinitrotoluene 11 418.03 1,4-Dimethoxybenzene 46 415.42 
4-Methyl-2,6-
dinitroaniline 

12 434.81 2-Methyl-3-nitroaniline 47 393.15 

5-Methyl-2,6-
dinitroaniline 

13 435.84 2-Methyl-4-nitroaniline 48 390.79 

5-Methyl-2,4-
dinitroaniline 

14 452.06 
4-Hydroxy-3-
nitroaniline 

49 384.93 

2,4-Dinitrotoluene 15 424.53 
4-Chloro-3-

methylphenol 
50 364.45 

4-Nitrophenol 16 361.48 2,4,6-Tribromophenol 51 420.17 
4-Chlorotoluene 17 361.72 2,4,6-Trinitrotoluene 52 374.01 

2,4,6-Trichlorophenol 18 390.64 
1,2,4,5-

Tetrachlorobenzene 
53 385.01 

Toluene 19 333.15 
3-Methyl-2,4-
dinitroaniline 

54 439.91 

3-Methyl-6-nitroaniline 20 394.19 
2-Methyl-3,5-
dinitroaniline 

55 449.66 

4-Methyl-2-nitroaniline 21 394.03 3,5-Dinitrotoluene 56 449.03 
1,2,4-Trichlorobenzene 22 369.29 3,4-Dinitrotoluene 57 436.01 

3,4-Dichlorotoluene 23 389.83 
1,2,4-

Trimethylbenzene 
58 390.65 

2,4-Dichlorotoluene 24 371.03 2,4-Dinitrophenol 59 418.15 
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Compounds  
S 

(J/molK) 
Compounds  

S 
(J/molK) 

Chlorobenzene 25 312.91 3,4-Dimethylphenol 60 366.28 
1,3,5-Trinitrobenzene 26 454.21 2,4-Dichlorophenol 61 363.99 

1,2,3,4-
Tetrachlorobenzene 

27 388.74 1,2,3-Trichlorobenzene 62 361.73 

2,3,4,5,6-
Pentachlorophenol 

28 440.69 2-Methyl-6-nitroaniline 63 385.42 

1,3-Dichlorobenzene 29 336.24 2-Methyl-5-nitroaniline 64 396.19 
2-Chlorophenol 30 335.58 1,3-Dinitrobenzene 65 392.01 
3-Methylphenol 31 351.15 4-Nitrotoluene 66 386.01 

2,3-Dinitrotoluene 32 426.83 1,2-Dimethylbenzene 67 337.67 
1,4-Dimethylbenzene 33 340.90 2-Methylphenol 68 337.29 

2,3,4,5-
Tetrachlorophenol 

34 416.02 1,4-Dichlorobenzene 69 330.48 

2,3,6-Trinitrotoluene 35 480.08    

 
 
TOPOLOGICAL INDICES 

 
A large number of topological indices Tis have been defined and used, 

majority of them being calculated from the various matrices corresponding to 
molecular graphs. The Adjacency matrix (A) and the Distance matrix (D) of 
the molecular graph have been most widely used in the definition of 
topological indices. The most used TIs are presented below. 

Randić index (1975), 1(G ), was introduced as the connectivity index 
[22,23] and is defined as (1): 

 
0.51

all edges
χ = (d(i)d(j))      (1) 

 

where d(i) and d(j) are the valencies of the vertices i and	j defining the edge 
ሺi, jሻ. 

Wiener index (1947), W(G), can be defined by (2): 
 

1W(G) [D(i,j)]
2 i j

                       (2) 

 

where D(i,j) is the number of edges on the shortest path joining vertex i and 
vertex j (i.e., the topological distance) in the graph [24]. 
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Hyper-Wiener index, WW(G), can be defined [25,26] as (3): 
 

21WW(G) ( d(u,v) (d(u,v)) )
2

  
  

 (3) 

 

where d(u,v) denotes the distance between the vertices u and v in the graph 
G and the summations run over all pairs of vertices of G. 

Randić’s original definition (1993) [27] of the hyper-Wiener index is 
applicable to trees only. 

Wiener polarity index (1947), Wp(G), of G is the number of unordered 
pairs of vertices (u,v) of G lying at distance 3 to each other. The Wiener 
polarity index [28,29] is defined as (4): 

 

WP (G) = |{(u, v) | d(u, v) = 3, u, v ∈ V }|.  (4) 
 

Balaban index (1982), J(G) of G was introduced in 1982 [30,31] as 
one of the less degenerated indices. It calculates the average distance sum 
connectivity index, according to eq.(5): 

 

J=
୑

ஜାଵ
∑ ൫D୧	D୨൯ୟ୪୪	ୣୢ୥ୣୱ

-0.5   (5) 

 

where M is the number of the edges in G; and Di is the distance sum from 
the vertex i to all the other vertices in G (i.e., the sum of all entries in the ith 
row of the distance matrix D). 

The cyclomatic number μ=μ (G) of a polycyclic graph G is equal to 
the minimum number of edges that must be removed from G to transform it 
to the related acyclic graph. For trees, μ=0; for monocycles, μ=1. 

Harary number, H(G), was introduced in 1993 [32].This index is 
defined by eq. (6) 

 
n n

i,j
i=1 j=1

1 (1/D )
2

  
     (6) 

 

Within this paper, a version of this index is calculated from the inverse of the 
squared elements of the distance matrix, according to eq.(7): 

 

H=
ଵ

ଶ
∑ ∑ ሺD୧୨

௡
୨

௡
୧ ሻିଶ     (7) 

 

where Di,j is the entry in the distance matrix D. 
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Szeged index, Sz(G), was introduced by Gutman [33,34] as (8): 
 

Szv(G)=∑ n୳ሺe|	Gሻ.ୣ n୴ሺe|	Gሻ   (8) 
 

n୴I=n୴ (e | G) is the number of vertices of G whose distance to the 
vertex v is smaller than the distance to the vertex u. Note that vertices 
equidistant to u and v are not counted. 

All the used topological indices were calculated in hydrogen 
suppressed graphs. The descriptors were calculated with Chemicalize program 
[35]. Seven topological indices tested in the present study are listed in Table 2. 

 
 

STATISTICAL ANALYSIS 
 
Structure-Property models (MLR models) are generated using the 

multi linear regression procedure of SPSS, version 16. The entropy (S, J/mol 
K) is used as the dependent variable and 1, J, H, Sz, WW, Wp and W 
indices are used as the independent variables. The models are assessed 
with r value (correlation coefficient), the r2 (coefficient of determination), the 
r2- adjusted, the s value (root of the mean square of errors), the F value 
(Fischer statistic), the D value (Durbin-Watson) and the Sig (significant). 

 
 

RESULTS AND DISCUSSION 
 
 Several linear QSPR models involving three to seven descriptors 
were established and the strongest multivariable correlations were identified 
by the backward method, with significant at the 0.05 level and regression 
analysis of the SPSS program. In the first of this study we drown scattering 
plots of S versus the seven topological indices (1, J, H, Sz, WW, Wp, W). 
Some of these plots are given in Figs. 1 to 3, respectively. 
 

 

 

 

Figure 1. Plot of the Randić index (1) versus entropy of 69 benzene derivatives. 
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Figure 2. Plot of the Szeged index (Sz) versus entropy of 69 benzene derivatives. 
 
 
 

 
 

Figure 3. Plot of the Wiener (W) versus entropy of 69 benzene derivatives. 
 
 
Table 2. Benzene derivatives and their topological indices, used in present study. 

 

A 1 J H W WW Wp Sz 

1 3.39 1.82 12.92 42 71 5 78 
2 3.39 1.82 12.92 42 71 5 78 
3 3.80 2.28 16.17 60 106 8 106 
4 3.79 2.23 16.08 61 110 7 108 
5 3.79 2.23 16.08 61 110 7 108 
6 4.33 1.98 19.15 88 176 9 146 
7 5.11 2.25 26.67 148 315 14 232 
8 4.20 2.09 19.53 84 160 10 144 
9 4.22 2.15 19.67 82 151 11 140 
10 4.70 2.32 22.73 117 245 11 186 
11 6.04 2.40 34.60 234 545 19 348 
12 6.43 2.70 39.02 282 669 21 420 
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A 1 J H W WW Wp Sz 

13 6.45 2.72 39.13 281 667 22 418 
14 6.43 2.65 38.83 287 698 21 430 
15 6.02 2.33 34.30 240 576 18 360 
16 4.70 2.26 22.60 120 262 11 192 
17 3.79 2.19 16.03 62 115 7 110 
18 4.61 2.49 23.28 110 215 13 184 
19 3.39 1.82 12.92 42 71 5 78 
20 5.11 2.22 26.60 150 327 14 236 
21 5.11 2.25 26.67 148 315 14 232 
22 4.20 2.09 19.53 84 160 10 144 
23 4.20 2.09 19.53 84 160 10 144 
24 4.20 2.09 19.53 84 160 10 144 
25 3.39 1.82 12.92 42 71 5 78 
26 6.91 2.46 42.60 354 906 21 516 
27 4.63 2.52 23.37 109 211 14 182 
28 5.46 2.76 31.60 174 357 21 282 
29 3.79 2.23 16.08 61 110 7 108 
30 3.80 2.28 16.17 60 106 8 106 
31 3.79 2.23 16.08 61 110 7 108 
32 6.04 2.47 34.83 228 511 19 336 
33 3.79 2.19 16.03 62 115 7 110 
34 5.04 2.39 27.32 140 281 17 230 
35 7.36 2.83 47.97 405 1036 26 588 
36 3.79 2.19 16.03 62 115 7 110 
37 6.43 2.70 39.02 282 669 21 420 
38 4.18 2.08 19.50 84 159 9 144 
39 3.00 2.00 10.00 27 42 3 54 
40 4.72 2.40 22.90 114 231 12 180 
41 5.61 2.30 29.74 206 521 15 314 
42 6.45 2.64 38.87 289 717 22 434 
43 6.43 2.66 3.85 286 691 21 428 
44 6.02 2.28 34.14 246 616 18 372 
45 5.63 2.54 30.43 188 416 16 278 
46 4.86 2.17 22.24 125 287 11 200 
47 5.13 2.28 26.80 146 306 15 228 
48 5.11 2.18 26.50 152 337 14 240 
49 5.11 2.25 26.67 148 315 14 232 
50 4.20 2.09 19.53 84 160 10 144 
51 4.61 2.49 23.28 110 215 13 184 
52 7.34 2.80 47.72 408 1044 25 594 
53 4.61 2.46 23.23 111 220 13 186 
54 6.45 2.72 39.13 281 667 22 418 
55 6.43 2.66 38.85 286 691 21 428 
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A 1 J H W WW Wp Sz 

56 6.00 2.33 34.23 240 573 17 360 
57 6.02 2.40 34.53 234 542 18 348 
58 4.20 2.09 19.53 84 160 10 144 
59 6.02 2.33 34.3 240 576 18 360 
60 4.20 2.09 19.53 84 160 10 144 
61 4.20 2.09 19.53 84 160 10 144 
62 4.22 2.15 19.67 82 151 11 140 
63 5.13 2.28 26.8 146 306 15 228 
64 5.11 2.18 26.5 152 337 14 240 
65 5.61 2.40 30.02 197 464 15 296 
66 4.70 2.26 22.6 120 262 11 192 
67 3.80 2.28 16.17 60 106 8 106 
68 3.80 2.28 16.17 60 106 8 106 
69 3.79 2.19 16.03 62 115 7 110 

 
 Distribution of the dependent variable against the independent variable 
for 69 chemicals was employed in developing quantitative structure- properties 
relationships. For obtaining appropriate QSPR models we used maximum R2 
method and followed backward regression analysis. The predictive ability of 
the model is discussed on the basis of predictive correlation coefficient. 
 
QSPR MODELS FOR ENTROPY (S) 
 

 Initial regression analysis indicated that combination of seven 
topological indices plays a dominating role in modeling the entropy. Table 3 
provides the regression parameters and quality of correlation of the proposed 
models for entropy of 69 benzene derivatives. 
 

Table 3. Statistics of models calculated with SPSS software 
 

Model Independent variables r r2 
2
adjr  s F Sig 

1 Sz, J, H, Wp, 1χ, WW, W 0.929 0.864 0.848 16.691 55.222 0.000 

2 Sz, J, Wp, 1χ, WW, W 0.929 0.864 0.850 16.559 65.454 0.000 

3 Sz, Wp, 1χ, WW, W 0.929 0.862 0.851 16.510 78.879 0.000 

4 Sz, 1χ, Wp, W 0.927 0.860 0.851 16.518 98.244 0.000 

5 Sz, 1χ, W 0.927 0.859 0.853 16.430 132.299 0.000 



HOSSEIN HOSSEINI, FATEMEH SHAFIEI 
 
 

 
306 

The best linear model contains three topological descriptors, namely, 
Randić (1), Wiener (W) and Szeged (Sz) indices.  

The regression parameters of the best three descriptor correlation 
model are gathered in equation 9. 

 

S=70.258+59.966X+2.748Sz-4.163W     (9) 

  r=0.927 ; r2=0.859 ; 
2
adjr  =0.859 ;  

 s=16.430; D=2.033; 
 F=132.299 ; mean square = 269.936 
 

This model produced a standard error of 16.430 J mol-1 K-1, a 
correlation coefficient of 0.927, and the adjusted correlation coefficient (adjusted 
r-squared) was calculated as 0.859. 

The result is therefore very satisfactory. Figure 4 shows the linear 
correlation between the observed and the predicted entropy values obtained 
using equation (9). 

 

 
 

Figure 4. Comparison between the predicted and  
observed entropy by MLR method (cf. eq. 9) 

 
 

The DURBIN-WATSON STATISTIC 
 

To verify and validate the regression models, we will focus on the 
Durbin-Watson (D) statistic, unstandardized predicted and residual values. 

The Durbin-Watson statistic ranges in value from 0 to 4. A value 
near 2 indicates non-autocorrelation; a value toward 0 indicates positive 
autocorrelation; a value toward 4 indicates negative autocorrelation. Therefore 
the value of Durbin-Watson statistic is close to 2 if the errors are uncorrelated. 
In our model, the value of Durbin-Watson statistic for model 5 is close to 2 
(See Eq. 9) hence the errors are uncorrelated.  
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RESIDUAL VALUES  
 
The residual values of entropy expressed by equation (9) are shown 

in Table 4. The residual values show a fairly random pattern (see Figure 5). 
This random pattern indicates that a linear model provides a decent fit to 
the data. 

 

 
 

Figure 5. Plot of residuals against observed values of  
benzene derivatives entropy (S). 

 
 

Table 4. Entropy (S) data of benzene derivatives. 
 

No. Observed  
S(J/molK) 

Predicted 
S(J/molK) 

Residual
 

No. 
 

Observed 
S(J/molK) 

Predicted 
S(J/molK) 

Residual 

1 317.835 313.051 4.784 36 349.828 341.718 8.110 
2 306.457 313.051 -6.594 37 445.053 436.089 8.964 
3 334.588 339.651 -5.063 38 356.019 366.955 -10.936 
4 364.048 340.385 23.663 39 262.968 286.154 -23.186 
5 323.616 340.385 -16.769 40 367.639 373.379 -5.740 
6 358.773 364.794 -6.021 41 388.619 412.003 -23.384 
7 394.751 398.127 -3.376 42 441.441 446.622 -5.181 
8 379.109 368.154 10.955 43 441.136 441.422 -0.286 
9 368.007 366.687 1.320 44 425.335 429.461 -4.126 
10 380.017 376.180 3.837 45 353.047 389.203 -36.156 
11 418.029 414.661 3.368 46 415.421 390.944 24.477 
12 434.807 436.089 -1.282 47 393.149 396.660 -3.511 
13 435.840 435.955 -0.115 48 390.792 403.460 -12.668 
14 452.059 442.756 9.303 49 384.928 398.127 -13.199 
15 424.529 421.461 3.068 50 364.454 368.154 -3.700 
16 361.482 380.180 -18.698 51 420.165 394.428 25.737 
17 361.720 341.718 20.002 52 374.009 444.296 -70.287 
18 390.637 394.428 -3.791 53 385.007 395.761 -10.754 
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No. Observed  
S(J/molK) 

Predicted 
S(J/molK) 

Residual
 

No. 
 

Observed 
S(J/molK) 

Predicted 
S(J/molK) 

Residual 

19 333.154 313.051 20.103 54 439.912 435.955 3.957 
20 394.186 400.794 -6.608 55 449.659 441.422 8.237 
21 394.032 398.127 -4.095 56 449.028 420.262 28.766 
22 369.290 368.154 1.136 57 436.007 413.461 22.546 
23 389.827 368.154 21.673 58 390.650 368.154 22.496 
24 371.033 368.154 2.879 59 418.150 421.461 -3.311 
25 312.911 313.051 -0.140 60 366.281 368.154 -1.873 
26 454.207 428.958 25.249 61 363.994 368.154 -4.160 
27 388.735 394.294 -5.559 62 361.725 366.687 -4.962 
28 440.693 448.284 -7.591 63 385.417 396.660 -11.243 
29 336.239 340.385 -4.146 64 396.188 403.460 -7.272 
30 335.579 339.651 -4.072 65 392.008 400.003 -7.995 
31 351.149 340.385 10.764 66 386.006 380.180 5.826 
32 426.832 406.661 20.171 67 337.673 339.651 -1.978 
33 340.904 341.718 -0.814 68 337.288 339.651 -2.363 
34 416.018 421.738 -5.720 69 330.475 341.718 -11.243 
35 480.077 441.495 38.582     

 
 
CONCLUSIONS 
 
 In this work, QSPR models for the prediction of entropy for a training 
set of benzene derivatives using MLR based on topological descriptors 
calculated from molecular structure have been developed. MLR model is 
proved to be a useful tool in the prediction of entropy. The aforementioned 
results and discussion lead us to conclude that combining the three descriptors 
(Sz, W, 1) could be used successfully for modeling and predicting entropy (S) 
of compounds. This model contains fewer topological descriptors, maximum of 
Fischer statistic value (F) and minimum root of the mean square of errors(s). 
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