
STUDIA UBB CHEMIA, LXIV, 2,Tom I, 2019 (p. 139-157) 
(RECOMMENDED CITATION) 
DOI:10.24193/subbchem.2019.2.12 
 
 
 

 

Dedicated to Professor Florin Dan Irimie on the  
Occasion of His 65th Anniversary 

 
MATHEMATICAL MODELLING AND PREDICTION OF CONGO 

RED ADSORPTION ON CHERRY STONES ACTIVATED 
CARBON 

 
 

ANDREI SIMIONa, CRISTINA GRIGORAȘa*,  
LIDIA FAVIERb, LUCIAN GAVRILĂa* 

 
 

ABSTRACT. The present paper was aimed to establish mathematical models 
useful to reduce the time required to discover the appropriate adsorption 
conditions of Congo Red (an intensively used organic dye) on an activated 
carbon prepared from cherry stones through calcination. To this purpose, 
various values of three parameters known as influencing the process, namely 
dye initial concentration (200 mg/L to 1000 mg/L), pH (2 to 12) and contact time 
(10 to 180 minutes) between the adsorbent and the adsorbate were variated. 
The recorded results of the adsorption process were used as data for Response 
Surface Methodology and Artificial Neural Network and several mathematical 
equations were generated. The conducted statistical analyses revealed that 
these equations can accurately express the Congo Red elimination from 
aqueous solutions. Moreover, the developed procedure is able to predict the 
process evolution in different conditions than those experimentally tested. 
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INTRODUCTION 

 
Colored wastewater coming from various industries is considered a 

major source of environmental concerns. Besides being responsible for the 
unwanted visual effect, due to their chemical structures, dyes are often 
characterized by a reduced biodegradability being difficult to remove by classical 
wastewater treatments [1]. Moreover, most of the dyes can also negatively affect 
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the human and animals state of health causing severe skin irritations [2, 3], 
respiratory problems [4], liver damages or central nervous system injuries [5].  

Therefore, many procedures directed to treat dye containing effluents 
are tested and the interest in developing and adapting other techniques 
increases continuously.  

One of these methods is represented by the adsorption process. 
Recognized as an efficient, inexpensive and simple to manage procedure [6], 
the adsorption can be conducted even by using low cost materials such as 
biomass prepared from flower spikes [7], alginate [8], chitosan [9, 10], clays [11, 
12] composites [13-15], adsorbents obtained from vegetal wastes [16, 17] 
including olive cake [18], date wastes [19], seeds [20], coffee grounds [21] etc.  

The adsorption mechanism relies on different interactions (van der Waals 
forces, hydrogen bonding, polarity, static interactions, dipole-dipole interactions 
etc.) occurring between the adsorbent and the adsorbate [22] and on the 
chemical attractions taking place between them [23]. Its efficiency is strongly 
influenced by a series of factors related to dye (class type, molecular structure 
etc.), characteristics of the material possessing adsorbing properties (surface 
area, regenerating capacity etc.) and to the parameters affecting the process 
(dye solution pH, its initial concentration, temperature, length of the contact time, 
adsorbent amount - dye solution volume ratio etc.). These aspects have been 
the subject of many researches [24-27] which revealed that dyes adsorption 
represent a very attractive alternative to the costlier other techniques of 
wastewater treatment [28-30] such as those employing for example immobilized 
enzymes [31], nanofiltration [32], Fenton oxidation [33], photosynthetic bacteria 
[34] or biogenic nanomaterials [35]. The already conducted investigations show 
also that the steps to be followed for establishing the appropriate dye adsorption 
conditions are time-consuming and require multiple experimental tests.  

Based on these considerations, in this work, we have used an absorbent 
material obtained from cherry stones (CS) by physical activation to eliminate 
Congo Red (CR) (a frequent anionic azo dye in textile, paper, cosmetic, printing 
industries) from aqueous solutions. The effect of pH, dye initial concentration 
and contact time was primarily explored. Then, the acquired data were 
introduced in computer specific software. Mathematical modeling and simulation 
were tested for predicting the adequate parameters to be utilized in order to 
obtain the best results in terms of CR removal. Two different approaches: the 
Response Surface Methodology (RSM) and the Artificial Neural Network (ANN) 
were applied. Their choice was based on the fact that they have been reported 
as procuring precise results for dye adsorption modeling. RSM takes into 
account the interactions of the involved parameters being helpful for designing 
the experiments. It fits linear or polynomial functions to the collected data [36-
38]. ANN is known as a simple and highly reliable artificial intelligence technique 
which can connect large sets of variables with the purpose of offering trustful 
nonlinear mathematical equations [39, 40]. Both methodologies return models 
verified by statistical tests [41, 42]. 
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RESULTS AND DISCUSSION 
 
Congo Red adsorption process onto cherry stones activated carbon 
 

Table 1. Congo Red dye final concentrations after adsorption 
on cherry stones activated carbon in different working conditions 

Initial dye 
concentration 

200 mg/L 400 mg/L 600 mg/L 800 mg/L 1000 mg/L 

Time (min) Final dye concentration (mg/L) at pH 2 
10 11.172 20.007 26.994 39.812 55.184 
20 5.858 7.591 16.007 27.044 37.148 
30 3.578 5.448 8.333 15.628 18.621 
40 2.022 3.612 5.757 7.911 8.788 
55 1.075 2.336 3.212 4.911 6.012 
60 0.827 1.272 1.896 2.435 3.312 
80 0.803 1.146 1.728 2.045 2.873 
90 0.791 1.083 1.644 1.850 2.654 
100 0.738 1.018 1.526 1.807 2.496 
120 0.631 0.888 1.290 1.722 2.181 
150 0.588 0.833 1.272 1.678 2.109 
180 0.488 0.779 1.178 1.622 1.899 
Time (min) Final dye concentration (mg/L) at pH 4.5 
10 18.177 29.580 43.797 60.602 78.919 
20 11.031 19.930 30.755 45.305 57.978 
30 8.390 14.616 20.745 31.961 42.375 
40 5.503 9.100 13.129 20.372 25.439 
55 3.575 4.879 6.873 10.133 13.208 
60 1.822 2.112 2.913 4.054 5.251 
80 1.436 1.870 2.686 3.519 4.946 
90 1.243 1.750 2.572 3.251 4.794 
100 1.210 1.677 2.441 3.111 4.684 
120 1.144 1.531 2.179 2.832 4.464 
150 0.891 1.169 1.705 2.599 3.693 
180 0.594 1.052 1.607 1.998 2.500 
Time (min) Final dye concentration (mg/L) at pH 7 
10 29.782 40.271 57.168 71.181 90.788 
20 20.181 30.123 40.01 52.571 70.644 
30 11.746 18.205 30.25 41.200 54.707 
40 7.101 13.137 20.274 29.786 37.331 
55 5.588 8.370 10.774 15.333 21.58 
60 2.474 3.273 4.662 6.970 7.981 
80 2.050 2.676 4.153 5.690 6.823 
90 1.838 2.377 3.899 5.050 6.244 
100 1.628 2.298 3.819 4.928 6.014 
120 1.207 2.141 3.660 4.683 5.555 
150 0.599 1.216 2.638 4.282 5.350 
180 0.516 1.178 2.452 3.500 4.210 
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The results of the adsorption process of Congo Red dye on activated 
carbon prepared from the cherry stones are represented in Table 1. For all the 
initial concentrations tested in the experiments, more than 90 % of the pollutant 
was retained after only 10 minutes of contact between the adsorbent material 
and the dye solutions. After 180 minutes the adsorption efficiency reached 
over 99 %. Similar observations were reported by other researches which 
have studied the CR elimination from aqueous effluents by the help of different 
adsorbing materials made from biowastes [43] or wood sawdust [44]. These 
researches explain that CR exists in its cationic form at acidic pH. The 
experiments showed that a pH between 2 and 7 favors the adsorption. 
Therefore, it can be concluded that the adsorbent surface is able to retain the 
pollutant due to the electrostatic attraction caused by its positively charged 
surface. On the contrary, when the experimental program was conduced at 
higher pH (10 and 12) (data not shown here) a very low CR retention was 
observed confirming the above hypothesis since at alkaline pH CR is in anionic 
form. In this case, HSO3

- ion will turn into –SO3–Na+. As consequence, the 
CR negative charge density will decrease inducing an electrostatic repulsion 
between the pollutant and the adsorbent surface with unfavorable repercussions 
on the adsorption process.  
 
RSM modelling 
 

Models fitting 
 

As stated before, RSM is a powerful tool containing multiple designs. 
The most frequently employed ones, Central composite and Box-Behnken, 
present limitations in considering the extent of the investigation ranges and/or 
the inability of including key experimental extreme points. Moreover, the 
generated equations present unsatisfactory correlation coefficients (with rather 
reduced values). Due to these facts and in order to characterize the entire 
adsorption process, it seemed adequate to create a custom central composite 
design (CCCD). Therefore, a three-factors with three variation levels CCCD 
consisting of 135 experimental runs (data not showed but retrieved from Table 1), 
including replications at the center point, was adopted to optimize the 
experimental data. The response function (the final CR concentration) was 
expressed by the linear and polynomial equations (1), (2) and (3). 
 
Linear ܻ ൌ 13.9211 ൅ ܣ9.622351 ൅ ܤ5.094307 െ  (1) ܥ19.0636
  
Quadratic ܻ ൌ 5.523482 ൅ ܣ9.157365 ൅ ܤ5.690574 െ ܥ19.5703 ൅

ܤܣ3.011641 െ ܥܣ12.5546 െ ܥܤ6.83729 ൅ ଶܣ1.826601 െ
ଶܤ0.849685 ൅  ଶ (2)ܥ18.124092
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Cubic ܻ ൌ 5.808814 ൅ ܣ5.542864 ൅ ܤ3.895732 െ ܥ15.1419 ൅
ܤܣ2.908154 െ ܥܣ12.8594 െ ܥܤ6.94087 ൅ ଶܣ1.73932 െ
ଶܤ0.79793 ൅ ଶܥ17.91289 െ ܥܤܣ2.79414 ൅ ܤଶܣ0.298217 െ
ܥଶܣ2.35658 െ ଶܤܣ1.14011 ൅ ଶܥܣ10.96966 ൅ ܥଶܤ1.397214 ൅
ଶܥܤ3.728796 െ ଷܣ0.54938 െ  ଷ (3)ܥ5.6188

 
where Y represent the final dye concentration and A, B and C are the coded 
values of the initial dye concentration, pH and adsorption time, respectively.  

The sequential model sum of squares (Table 2) can be viewed in the 
reduction of the sum of squares error (SSE). A predictor added to a model 
explains some of the response variability and thereby reduces the error. A 
sequential sum of squares quantifies how much variability could be explained 
(increase in regression sum of squares) or alternatively how much error could 
be reduced (reduction in the error sum of squares). In this study, the sequential 
model shows a value of 1648.202 for the sum of squares and therefore it favors 
the selection of the cubic polynomial equation instead of the quadratic model 
even though this last one is intensively used when RSM is applied. 
 

Table 2. Sequential model sum of squares 

Model 
Sum of 

Squares 
Degree of 
freedom 

Mean 
Square 

F-value 
p-value 
Prob > F 

Mean vs Total 28883.77 1 28883.77 - - 
Linear vs Mean 30965.47 3 10321.82 90.34611 < 0.0001 
2FI* vs Linear 6925.197 3 2308.399 36.74498 < 0.0001 
Quadratic vs 2FI 6024.829 3 2008.276 124.4959 < 0.0001 
Cubic vs Quadratic 1648.202 9 183.1336 57.69459 < 0.0001 
Residual 368.2059 116 3.174189 - - 
Total 74815.68 135 554.1902 - - 

*2FI – two factor interaction 
 

The quality of the models (Table 3) was statistically evaluated firstly 
based on the coefficient of determination (R2) and by graphical comparison 
of the predicted vs. measured values (Figure 2). 
 

Table 3. Models summary statistics 

Model 
Standard 
deviation 

R2 Adjusted R2 Predicted R2 PRESS* 

Linear 10.68867 0.67416 0.666698 0.650026 16074.99 
Quadratic 4.016374 0.9561 0.952939 0.946682 2448.981 
Cubic 1.781625 0.991984 0.99074 0.988706 518.758 

*PRESS – Predicted residual error sum of square 
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Figure 2. Plots of measured and predicted values for final CR concentration 

 
 
R2 is the ratio of the explained variation versus the total variation. It 

verifies the reliability of an established model. Values of R2 closer to 1 will 
better fit the experimental data while a smaller R2 implies a more reduced 
similarity between the predicted and the measured records. As noted in 
Table 3, R2 is 0.674 for the linear equation, 0.956 for the quadratic model 
and 0.992 for the cubic one. This means that 32.6 %, 4.4 % and respectively 
0.8 % of the total variables for the analyzed response function were not 
explained by the models. The adjusted R2 value also explains the accuracy 
of the model. The important difference between R2 and adjusted R2 is that 
the latter increases only with the addition of input (independent) variables 
recognized as significant. If non-significant variables are added into the 
model, the value of adjusted R2 will decrease, whereas the R2 will continually 
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increase. Thus, the smaller gap between R2 and the adjusted R2 is desirable 
for the judgement of a model adequacy. The values of adjusted R2 of the 
response show that only 35.0 %, 5.3 % and respectively 1.1 % of the total 
models variation could not explained.  

R2 values were comparable with those of the predicted R2 indicating 
that the models almost perfectly explain the studied experimental range and 
they can be successfully used to predict the final dye concentration.  

Taking into consideration these aspects, it can be concluded that the 
linear model is the less precise from all and the cubic model has a slight 
higher degree of confidence then the quadratic one.  

The analysis of variance (ANOVA), detailed in Table 4, shows that 
the generated mathematical equations models were highly significant, 
because the F-values are greater than 0.001. The p-values inferior to 0.0001 
means that there are only 0.01 % of the total variation that could not be 
explained by the model and are attributed to the noise signal.  
 
 

Table 4. ANOVA results of the RSM models 

Source 
Sum of 

Squares 
Degree of 
freedom 

Mean 
Square 

F-value p-value 

Linear 
Model 30965.47 3 10321.82 90.34611 < 0.0001 
Residual 14966.43 131 114.2476 - - 
Corrected Total 45931.91 134 - - - 
 Standard 

deviation 
Mean 

Coefficient of 
variance, % 

Adequate 
precision 

10.68867 14.62716 73.0741 37.64376 
Quadratic 
Model 43915.5 9 4879.5 302.4872 < 0.0001 
Residual 2016.408 125 16.13126 - - 
Corrected Total 45931.91 134 - - - 
 Standard 

deviation 
Mean 

Coefficient of 
variance, % 

Adequate 
precision 

4.016374 14.62716 27.45833 79.30854 
Cubic 
Model 45563.7 18 2531.317 797.4688 < 0.0001 
Residual 368.2059 116 3.174189 - - 
Corrected Total 45931.91 134 - - - 
 Standard 

deviation 
Mean 

Coefficient of 
variance, % 

Adequate 
precision 

1.781625 14.62716 12.18025 142.7195 
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Adequate precision measures the range in predicted response and its 
associated error (i.e., a signal-to-noise ratio). Its values were higher than 4 
implying desirable fitness of the equations. The coefficient of variance (CV) 
presents the reproducibility of the models. Expressed as the percent ratio 
between the standard error of the estimate and the mean value of the observed 
response, when it is under 10 %, it states that the model can be considered as 
reasonably reproducible. The cubic and the quadratic models presented the 
closest values (12.18 % and 27.45 % respectively) to the targeted 10 % of CV 
while the linear mathematical model has a CV of 73.07 %. Therefore, it was not 
submitted to more advanced statistical analyses. 

Table 5 shows the ANOVA of the quadratic model coefficients for the 
response indicating that eight terms, namely A, B, C, AB, AC, BC, A2 and C2 
were found out to be statistically significant (p < 0.0001) for the studied 
response function. The quadratic term A2, was less significant based on a 
95 % confidence level (p < 0.05). The lowest importance was attributed to 
the quadratic term B2 (p < 0.2488).  

The sum of squares (SS) of model components was used to calculate 
the percentage contributions (PC) for each individual term. For the final dye 
concentration, the time (C) has the highest level of significance with a 
contribution of 51.29 % as compared to the other components.  

 
 

Table 5. ANOVA results for the quadratic model coefficients 

Factor 
Coeffi-
cient 

95% Confidence 
interval Standard 

error 
F-value p-value 

Sum of 
squares 

Contri- 
bution 

(%) Low High 

Y, Final pollutant concentration 

Intercept 5.523482 3.860511 7.186453 0.840256 - - - - 

A 9.157365 8.188344 10.12639 0.489621 349.8013 < 0.0001 5642.736 12.78 

B 5.690574 4.851378 6.529771 0.424024 180.1073 < 0.0001 2905.358 6.58 

C -19.5703 -20.6042 -18.5364 0.522412 1403.36 < 0.0001 22637.97 51.29 

AB 3.011641 1.826688 4.196593 0.598726 25.30174 < 0.0001 408.1491 0.92 

AC -12.5546 -14.0149 -11.0943 0.737855 289.5119 < 0.0001 4670.192 10.58 

BC -6.83729 -8.10195 -5.57263 0.639001 114.4892 < 0.0001 1846.856 4.18 

A2 1.826601 0.191211 3.461991 0.82632 4.886419 0.0289 78.82412 0.18 

B2 -0.84968 -2.30095 0.601582 0.733286 1.342661 0.2488 21.65882 0.05 

C2 18.24092 16.35712 20.12471 0.951833 367.2586 < 0.0001 5924.346 13.42 
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Table 6 points the ANOVA applied for the cubic model coefficients of 
the response function indicating that sixteen terms A, B, C, AB, AC, BC, A2, 
B2, C2, ABC, A2C, AB2, AC2, B2C, BC2 and C3 were found out to be statistically 
significant (p < 0.0001) for the adsorption process. The other terms of the 
model as the quadratic term B2 and his interaction with initial concentrations 
and time (A2B, AB2, B2C) and the cubic term A3 were highly significant based 
on a 95 % confidence level (p < 0.05), meaning that the variable pH did not 
have an intense influence on dye removal in the tested experimental range. 
For the final dye concentration, the time and his interactions (C) showed the 
highest level of significance.  
 

Table 6. ANOVA results for the cubic model coefficients 

Factor Coefficient 

95% Confidence 

interval 
Standard 

error 
F-value P-value 

Sum of 

squares 

Contri-

bution 

(%) Low High 

Y, Final pollutant concentration 

Intercept 5.808814 0.375201 5.065681 6.551948 - - - - 

A 5.542864 0.766931 4.023861 7.061866 52.23436 < 0.0001 165.8017 1.02 

B 3.895732 0.371286 3.160353 4.631111 110.0932 < 0.0001 349.4566 2.15 

C -15.1419 0.776783 -16.6804 -13.6034 379.9809 < 0.0001 1206.131 7.41 

AB 2.908154 0.266004 2.3813 3.435008 119.5252 < 0.0001 379.3956 2.33 

AC -12.8594 0.327725 -13.5085 -12.2103 1539.635 < 0.0001 4887.093 30.04 

BC -6.94087 0.283819 -7.50301 -6.37873 598.0615 < 0.0001 1898.36 11.67 

A2 1.73932 0.36712 1.012193 2.466447 22.44621 < 0.0001 71.24851 0.44 

B2 -0.79793 0.325787 -1.4432 -0.15267 5.998842 0.0158 19.04146 0.12 

C2 17.91289 0.424883 17.07135 18.75442 1777.43 < 0.0001 5641.899 34.68 

ABC -2.79414 0.400866 -3.58811 -2.00018 48.58463 < 0.0001 154.2168 0.95 

A2B 0.298217 0.448927 -0.59094 1.187374 0.441278 0.5078 1.4007 0.01 

A2C -2.35658 0.553247 -3.45236 -1.2608 18.14369 < 0.0001 57.59152 0.35 

AB2 -1.14011 0.460014 -2.05122 -0.22899 6.142595 0.0146 19.49776 0.12 

AC2 10.96966 0.597115 9.786999 12.15232 337.4976 < 0.0001 1071.281 6.59 

B2C 1.397214 0.490958 0.424809 2.369619 8.099099 0.0052 25.70807 0.16 

BC2 3.728796 0.517117 2.704581 4.75301 51.99484 < 0.0001 165.0415 1.01 

A3 -0.54938 0.722842 -1.98106 0.882299 0.577642 0.4488 1.833547 0.01 

C3 -5.6188 0.812954 -7.22896 -4.00864 47.76998 < 0.0001 151.631 0.93 
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Figures 3 and 4 illustrate the influence of two factors while maintaining 
the other constant at coded value of 0 for the quadratic and the cubic 
mathematical models. Dye initial concentration has negative effect on the 
adsorption process. On the contrary, the pH showed a positive impact but its 
influence extent passes from slightly less to highly inferior than that of the 
adsorption time once that initial dye concentrations increase. The adsorption 
time is the most important parameter and showed a positive effect on dye 
removal. The major differences between models are the number of negative 
values generated on the final dye concentrations, the quadratic model being 
inferior in the data prediction at low level of initial concentrations and pH than 
the cubic one. 

Coefficients used for the cubic mathematical model are given in Table 7. 
 

Table 7. Final equation in terms of actual factors 

Final dye concentration = 

Quadratic coefficients Cubic coefficients Actual parameters 

4.141866292 -1.90961894 - 

0.034002923 0.016535466  * Init. dye conc.  

5.035463556 4.799626589  * pH 

-0.733780548 -0.089280881  * Time 

0.003011641 0.00953296  * Init. dye conc.* pH 

-0.00069748 -0.001531938  * Init. dye conc.* Time 

-0.060775911 -0.150172977  * pH * Time 

1.14163E-05 4.09688E-05  * Init. dye conc.2 

-0.135949235 -0.12727603  * pH2 

0.009007859 0.00757967  * Time2 

- -6.2092E-05  * Init. dye conc.* pH * Time 

- 7.45542E-07  * Init. dye conc.2 * pH 

- -3.27303E-07  * Init. dye conc.2 * Time 

- -0.000456044  * Init. dye conc.* pH2 

- 1.35428E-05  * Init. dye conc.* Time2 

- 0.004967872  * pH2 * Time 

- 0.000736552  * pH * Time2 

- -8.58406E-09  * Init. dye conc.3 

- -6.16604E-05  * Time3 
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Figure 3. Response surface graphs and contour plots of final dye concentration: the 
effect of initial dye concentration, pH and adsorption time for the quadratic model 
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Figure 4. Response surface graphs and contour plots of final dye concentration: 
effect of initial dye concentration, pH and adsorption time for the cubic model 
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Testing the model 
 

 The adopted mathematical model was tested in the conditions planed 
in the experimental setup A comparison of measured Congo Red final 
concentrations when dye adsorption from solutions with initial concentrations 
varying between 200 mg/L and 1000 mg/L was conducted at pH 4.5 for 10 
to 100 minutes and data predicted by the cubic model is reported in Table 8 
as an example. Only minor differences were distinguished. These outcomes 
along with the similar results registered for runs carried out at pH 2.0 and 7.0 
(data not shown) sustain also the model adequacy.  
  
Table 8. Measured final dye concentrations at pH 4.5 vs predicted by cubic model 

Initial dye 
conc. 

200 mg/L 400 mg/L 600 mg/L 800 mg/L 1000 mg/L 

Time 
(min) 

Final dye concentration, mg/L 

M P M P M P M P M P 
10 18.177 19.756 29.580 30.889 43.797 44.482 60.602 60.124 78.919 77.401 
20 11.031 13.007 19.930 20.937 30.755 31.066 45.305 42.980 57.978 56.269 
30 8.390 8.238 14.616 13.508 20.745 20.713 31.961 29.443 42.375 39.285 
40 5.503 5.081 9.100 8.230 13.129 13.055 20.372 19.141 25.439 26.078 
55 3.575 3.164 4.879 4.736 6.873 7.720 10.133 11.705 13.208 16.279 
60 1.822 2.117 2.112 2.653 2.913 4.340 4.054 6.765 5.251 9.517 
80 1.436 1.157 1.870 1.246 2.686 1.962 3.519 2.893 4.946 3.627 
90 1.243 0.503 1.750 1.181 2.572 2.224 3.251 3.221 4.794 3.758 

100 1.210 -0.760 1.677 1.049 2.441 2.961 3.111 4.565 4.684 5.448 

*M – measured value, P – predicted value 
 
ANN modelling 
 

A selection of data presented in Table 1 was employed for building a 
feed forward multilayer perceptron’s ANN. The values of the three 
parameters influencing the adsorption procedure (initial dye concentration, 
pH and time) were used as inputs while the final dye concentration was 
considered as output. The network was trained on 70 % of the input data. 
The cross validation and the final testing were each managed on 15 % of the 
inputs. After various trials, a 3 neurons hidden layer with then process 
elements on the first layer, five process elements on the second and four 
process elements on the third layer lead to the best results.  

At 10000 epochs, the training and the cross validation mean squared 
errors (MSE) overlay almost perfectly. The MSE insignificant values of 
0.000430891 and of 0.000365063 respectively allow to consider that the 
developed network defines with high confidence the adsorption process evolution. 
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The analysis of experimental recorded final dye concentrations and 
of those predicted by ANN (Table 9) discloses as well no significant 
dissimilarities. Thus, the chosen ANN can offer a correct fact sustained by 
the high value of the correlation coefficient (0.9926) and by the low value of 
the minimum square error (13.61).  
 

Table 9. Measured final dye concentrations vs predicted by ANN model 

Run 
Initial dye 

concentration, mg/L 
pH 

Time, 
min. 

Final dye concentration, mg/L 
Measured Predicted 

1 200 2 10 11.172 11.196 
2 200 2 20 5.858 6.949 
3 200 2 40 2.022 2.785 
4 200 2 50 1.075 1.021 
5 400 2 30 5.448 6.869 
6 400 2 90 1.083 1.147 
7 600 2 60 1.896 1.467 
8 600 2 80 1.728 1.446 
9 800 2 50 4.911 3.771 
10 800 2 60 2.435 2.040 
11 800 2 80 2.045 1.861 
12 800 2 90 1.85 2.183 
13 1000 2 20 37.148 36.641 
14 1000 2 30 18.621 20.792 
15 1000 2 50 6.012 4.550 
16 400 4.5 50 4.879 4.548 
17 400 4.5 90 1.7495 2.022 
18 800 4.5 30 31.961 29.506 
19 800 4.5 40 20.372 17.766 
20 800 4.5 60 4.054 5.106 
21 1000 4.5 10 78.919 69.129 
22 1000 4.5 50 13.208 12.197 
23 1000 4.5 100 4.684 4.495 
24 200 7 30 11.746 12.720 
25 400 7 20 30.123 29.439 
26 400 7 40 13.137 12.952 
27 400 7 50 8.37 7.506 
28 600 7 20 40.01 42.683 
29 600 7 30 30.25 30.035 
30 600 7 40 20.274 19.401 
31 600 7 90 3.899 3.613 
32 800 7 80 5.69 4.557 
33 1000 7 10 90.788 72.717 
34 1000 7 90 6.244 5.214 
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Figure 5 shows the measured values versus the predicted responses 
indicating that the ANN model almost perfectly explains the studied 
experimental range and can be successfully used to predict the dye final 
concentration. 
 

 
Figure 5. Plot of measured and predicted values for final CR concentration 

 
 
CONCLUSION 

 
The present research reveals that Congo Red dye is adsorbed on 

activated carbon obtained by physical activation method from cherry stones, 
in acidic and neutral media, more than 99 % of the existing dye being 
removed after 180 minutes. 

Even though there were drawbacks in finding the appropriate 
mathematical models for describing the adsorption of Congo Red dye when 
influenced by multiples process parameters, this paper emphasizes the 
successful possibility of using Response Surface Methodology (RSM) and 
Artificial Neural Network (ANN) for generate adequate equations that fit the 
recorded experimental data and illustrate their behavior with a high confidence 
level.  

The third-degree polynomial (cubic) model obtained with RSM can be 
efficiently employed to predict the residual dye concentrations all over the 
established parameters ranges: initial concentration from 200 mg/L to 1000 
mg/L, pH from 2 to 7 and contact time between the pollutant and the adsorbent 
material from 10 minutes to 180 minutes. ANN modelling conducted also to 
reliable results but contrary to the cubic model, it cannot be emulated in usual 
computer software’s such as Excel spreadsheet requiring only dedicated 
professional programs which represent a limiting factor for the interested users.  
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EXPERIMENTAL SECTION 
 

Reagents 
 

Congo Red (CR) dye (Sigma Aldrich, France) solutions with concentrations 
of 200 mg/L, 400 mg/L, 600 mg/L 800 mg/L and 1000 mg/L were obtained with 
distilled water.  

Sodium hydroxide 0.1 N or hydrochloric acid 0.1 N, procured from 
Chemical Company (Iasi, Romania), were added in order to insure specific 
pH values of 2, 4.5, 7, 10 and 12. 
 
Adsorbent preparation 
 

Cherry stones used for the adsorbent material preparation were firstly 
washed then dried at room temperature and crushed.  

The resulted powder was calcinated at 600 °C for 4 h in a Caloris 
L1003 laboratory furnace (Caloris Group, Romania) and the product 
(abbreviated as CS) was kept at 20 °C in closed vessels until further use. 
 
Adsorption setup 
 

0.1 g of CS were introduced in 50 mL Erlenmeyer flasks. 20.0 mL of CR 
solution having the anteriorly mentioned concentrations and pH were added.  

The adsorption experiments were executed at room temperature on 
Nahita Blue 692 heating plates (Auxilab, Spain) for 10, 20, 30, 40, 55, 60, 80, 
90, 100, 120, 150 and 180 minutes.  

The solid phase was eliminated with the help of a Nahita 2615/1 
digital centrifuge (Auxilab, Spain) set at 3000 rpm for 5 minutes.  

The CR concentration was determined by UV-VIS spectrometry (Zuzi 
4201 UV-VIS spectrophotometer, Auxilab, Spain) at specific maximum 
absorbance wavelengths (570 nm for pH 2; 530 nm for pH 4.5 and 500 nm 
for pH 7, 10 and 12). 

The adsorption efficiency was calculated with the equation (4): 
 

ሺ%ሻ	ݕ݂݂ܿ݊݁݅ܿ݅݁	݊݋݅ݐ݌ݎ݋ݏ݀ܣ ൌ
஼బି஼೐
஼బ

ൈ 100 (4) 

 
where C0 and Ce are the initial and final dye concentration, respectively. 
 
RSM modelling 
 

All data recorded from the experimental program were introduced in 
two computer software’s with the special aim of finding mathematical models 
able to describe the adsorption process.  
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Response Surface Methodology (RSM) with custom central composite 
design (CCCD) based on a three factors and three levels of variation setup 
was performed using Design-Expert 7.0 software. The regression procedure 
fitted the polynomial models represented by the equations (5), (6) and (7). 
 
Linear  ܻ ൌ ଴ߚ ൅ ∑ ௜ߚ ௜ܺ

௞
௜ୀଵ ൅ ݁଴ (5) 

  
Quadratic ܻ ൌ ଴ߚ ൅ ∑ ௜ߚ ௜ܺ

௞
௜ୀଵ ൅ ∑ ௜௜ߚ ௜ܺ

ଶ ൅௞
௜ୀଵ ∑ ∑ ௜௝ߚ ௜ܺ ௝ܺ ൅ ݁଴

௞
௝ୀ௜ାଵ

௞
௜ୀଵ  (6) 

  

Cubic 

ܻ ൌ ଴ߚ ൅ ∑ ௜ߚ ௜ܺ
௞
௜ୀଵ ൅

∑ ௜௜ߚ ௜ܺ
ଶ ൅௞

௜ୀଵ ∑ ௜௜௜ߚ ௜ܺ
ଷ ൅௞

௜ୀଵ ∑ ∑ ௜௝ߚ ௜ܺ ௝ܺ ൅
௞
௝ୀ௜ାଵ

௞
௜ୀଵ

∑ ∑ ௜௜௝ߚ ௜ܺ
ଶ

௝ܺ ൅ ൅∑ ∑ ௜௝௝ߚ ௜ܺ ௝ܺ
ଶ ൅௞

௝ୀ௜ାଵ
௞
௜ୀଵ

௞
௝ୀ௜ାଵ

௞
௜ୀଵ

∑ ∑ ∑ ௜௝௞ߚ ௜ܺ ௝ܺܺ௞ ൅
௞
௝ୀ௜ାଵ

௞
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௞
௜ୀଵ ݁଴ (7) 

 
Herein, Y is the predicted response (final dye concentration); Xi and 

Xj are variables; β0 is the constant coefficient; βi is the coefficient that 
determines the influence of parameter i in the response (linear term), βij, βijk, 
βiij, βijj are the cross-products, coefficient βii is the quadratic coefficient and 
βiii is the cubic coefficient, which refer to the effects of the interaction among 
independent variables. The multiple regression analysis can be applied to 
obtain the coefficient, and the equation can be used to predict the response.  

The coded values (Table 9) of the parameters can be determined 
from the following equation: 
 

௜ݔ ൌ
௑೔ି௑೚
ఋ௑

 (8) 

 
X0 is the real value of the independent variable at the center point, Xi 

is the real value of the independent variable, and δX is the step change 
values between low (−1) and high (+1) levels. 
 
 

Table 9. Experimental ranges and levels of the independent test variables 

Variables Unit Symbol 
Coded variable level 

-1 0 1 

Initial dye concentration mg/L A 400 600 800 

pH - B 2.0 4.5 7.0 

Time min. C 10 55 100 
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ANN modelling 
 
 Data employed for the Response Surface Methodology design were 
chosen as inputs and outputs in an Artificial Neural Network three-layered 
feed forward momentum type. Hidden layers with two to twelve neurons were 
tried with NeuroSolutions 6.0 software. Three input and one output node with 
10000 epochs were used for ANN training. 
 
 
 

REFERENCES 
 
 

1. N. Ribeiro de Mattos; C. Rodrigues de Oliveira; L.G. Brogliato Camargo; R.S. 
Rocha da Silva; R. Lassarote Lavall; Sep. Purif. Technol., 2019, 209, 806-814 

2. H. Park; J.-H. Hwang; J.-S. Han; B.-S. Lee; Y.-B. Kim; K.-M. Joo; M.-S. Choi; 
S.-A. Cho; B.-H. Kim; K.-M. Lim; Food Chem. Toxicol., 2018, 121, 360-366 

3. C. Goebel; T.L. Diepgen; B. Blomeke; A.A. Gaspari; A. Schnuch; A. Fuchs; K. 
Schlotmann; M. Krasteva; I. Kimber; Regul. Toxicol. Pharm., 2018, 95, 124-132 

4. K.B. Tan; M. Vakili; B.A. Horri; P.E. Poh; A.Z. Abdullah; B. Salamatinia; Sep. 
Purif. Technol., 2015, 150, 229-242 

5. Y. Gao; S.-Q. Deng; X. Jin; S.-L. Cai; S.-R. Zheng; W.-G. Zhang; Chem. Eng. 
J., 2019, 357, 129-139 

6. D. Jiang; M. Chen; H. Wang; G. Zeng; D. Huang; M. Cheng; Y. Liu; W. Xue; Z. 
Wang; Coordin. Chem. Rev., 2019, 380, 471-483 

7. Z. Jia; Z. Li; T. Ni; Z. Li; J. Mol. Liq., 2017, 229, 285-292 
8. A. Oussalah; A. Boukerroui; A. Aichour; B. Djellouli; Int. J. Biol. Macromol., 

2019, 124, 854-862 
9. G.L. Dotto; J.M.N. Santos; E.H. Tanabe; D.A. Bertuol; E.L. Foletto; E.C. Lima; 

F.A. Pavan; J. Clean. Prod., 2017, 144, 120-129 
10. H. Ma; A. Kong; Y. Li; B. He; Y. Song; J. Li; J. Clean. Prod., 2019, 214, 89-94 
11. I. Chaari; E. Fakhfakh; M. Medhioub; F. Jamoussi; J. Mol. Struct., 2019, 1179, 

672-677 
12. W. Hamza; N. Dammak; H.B. Hadjltaief; M. Eloussaief; M. Benzina; Ecotox. 

Environ. Safe., 2018, 163, 365-371  
13. M. Tanzifi; M.T. Yaraki; M. Karami; S. Karimi; A.D. Kiadehi; K. Karimipour; S. 

Wang; J. Colloid. Interf. Sci., 2018, 519, 154-173 
14. A.M. Herrera-Gonzalez; M. Caldera-Villalobos; A.-A. Pelaez-Cid; J. Environ. 

Manage., 2019, 234, 237-244 
15. D.P. Dutta; S. Nath; J. Mol. Liq., 2018, 269, 140-151 
16. J. Mo; O. Yang; N. Zhang; W. Zhang; Y. Zheng; Z. Zhang; J. Environ. Manage., 

2018, 227, 395-405 
17. K.A. Adegoke; O.S. Bello; Water Res. Ind., 2015, 12, 8-24 
18. K.H. Toumi; M. Bergaoui; M. Khalfaoui; Y. Benguerba; A. Erto; G.L. Dotto; A. 

Amrane; S. Nacef; B. Ernst; J. Mol. Liq., 2018, 271, 40-50 



MATHEMATICAL MODELLING AND PREDICTION OF CONGO RED ADSORPTION ON CHERRY 
STONES ACTIVATED CARBON 

 

157 

19. M. Wakkel; B. Khiari; F. Zagrouba; J. Taiwan. Inst. Chem. E., 2019, 96, 439-452 
20. N.K. Soliman; A.F. Moustafa; A.A. Aoud; K.S.A. Halim; J. Mater. Res. Technol., 

2018, https://doi.org/10.1016/j.jmrt.2018.12.010  
21. X. Wen; H. Liu; L. Zhang; J. Zhang; C. Fu; X. Shi; X. Chen; E. Mijowska; M.-J. 

Chen; D.-Y. Wang; Bioresource Tehnol., 2019, 272, 92-98 
22. S. Dawwod; T.K. Sen; J. Chem. Proc. Eng., 2014, 1, 1-11  
23. T. Ngulube; J.R. Gumbo; V. Masindi; A. Maity; J. Environ. Manage., 2017, 191, 

35-57 
24. K. Vikrant; B.S. Giri; N. Raza; K. Roy; K.-H. Kin; B.N. Rai; R.S. Singh; 

Bioresource Technol., 2018, 253, 355-367 
25. M.C. Collivignarelli; A. Abba; M.C. Miino; S. Damiani; J. Environ. Manage., 

2019, 236, 727-745 
26. E. Li; B. Mu; Y. Yang; Bioresource Technol., 2019, 277, 157-170 
27. H.N. Tran; S.-J. You; A. Hosseini-Badegharaei; H.-P. Chao; Water Res., 2017, 

120, 88-116 
28. C.X.-H. Su; L.W. Low; T.T. Teng; Y.S. Wong; J. Environ. Chem. Eng., 2016, 4, 

3618-3631. 
29. M.M. Hassan; C.M. Carr; Chemosphere, 2018, 209, 201-219 
30. C.R. Holkar; A.J. Jadhav; D.V. Pinjari; N.M. Mahamuni; A.B. Pandit; J. Environ. 

Manage., 2016, 182, 351-366 
31. L.Y. Jun; L.S. Yon; N.M. Mubarak; C.H. Bing; S. Pan; M.K. Danquah; E.C. 

Abdullah; M. Khalid; J. Environ. Chem. Eng., 2019, 7, 1-14  
32. M.A. Abdel-Fatah; Ain Shams Eng. J., 2018, 9, 3077-3092 
33. M.-H. Zhang; H. Dong; L. Zhao; D.-E. Wang; D. Meng; Sci. Total Environ., 2019, 

670, 110-121 
34. A. Talaiekhozani, S. Rezania; J. Water Process Eng., 2017, 19, 312-321 
35. P.K. Gautam; A. Singh; K. Misra; A.K. Sahoo; S.K. Samanta; J. Environ. 

Manage., 2019, 231, 734-748 
36. S. Karimifard; M.R.A. Moghaddam; Sci. Total Environ., 2018, 640-641, 772-797 
37. S. Khamparia; D. Jaspal; J. Environ. Manage., 2017, 201, 316-326  
38. A.K.S. Priya; B.S. Kaith; N. Sharma; J.K. Bhatia; V. Tanwar; S. Panchal; S. 

Bajaj; Int. J. of. Biol. Macromol., 2019, 124, 331-345  
39. A.M. Ghaedi; A. Vafaei; Adv. Colloid Interfac., 2017, 245, 20-39 
40. M.R. Gadekar; M.M. Ahammed; J. Environ. Manage., 2019, 231, 241-248 
41. A. Simion; C.G. Grigoraş; A. Chiriac; N.C. Tâmpu; L. Gavrilă; Environ. Eng. 

Manag. J., 2018, 17, 771-781 
42. A.I. Simion; I. Ioniţă; C.G. Grigoraş; L. Favier-Teodorescu; L. Gavrilă; Environ. 

Eng. Manag. J., 2015, 14, 277-288 
43. S. Kaur; S. Rani; K. Mahajan; J. Chem., 2013, 

http://dx.doi.org/10.1155/2013/628582  
44. C. Tian; C. Feng; M. Wei; Y. Wu; Chemosphere, 2018, 208, 476-483 
 






