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ABSTRACT. The current standards for evaluating corrosion during salt spray 
tests rely on the visual analysis of the specimens, and this may be a limitation 
when higher resolution quantitative outputs are desired. In this work, 
computational image analysis was used to measure the area affected by 
corrosion during salt spray tests with aluminum alloy, copper, carbon steel and 
galvanized steel plates. The software ImageJ was used to select and measure 
the corroded areas differentiating the corrosion products from the metals 
uncorroded surfaces according to their different colors. With ten measurements 
for each selected exposure time, a 95 % confidence interval was calculated 
for each material and time of exposure, giving an indication of the precision 
of the estimated corroded area. These data were compared with a visual 
inspection carried out by an experienced technician. The results indicate that 
computational image analysis may be a powerful tool to obtain higher resolution 
in the results interpretation in comparison with the standard visual analysis. 
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INTRODUCTION  

 
Although salt spray is extensively used as a comparative corrosion 

test, its outcome may be limited by the current standards. Corrosion evaluation 
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standards, such as ASTM D610–08 [1], which uses visual examples as 
reference for comparison and subsequent rating of corrosion grades, are 
based on visual analysis. As such, they add some uncertainty to the results 
due to the adoption of subjective criteria and lowering the results resolution 
by limiting the outcome to an interval from 0 (zero) to 10, a discrete scale 
based on the percentage of area failed. 

Computational image analysis may be an alternative to overcome this 
limitation by obtaining higher resolution data in order to improve the 
comparative investigation. One example was that reported by ASTM 
International with the standard D 7087-5a (2010) [2], where they reported a 
procedure for measuring rust creepage at scribe by an imaging technique. 
However, the withdrawal of this standard in 2019 showed that there are still 
challenges to be tackled in order to provide reliable methods for computational 
corrosion evaluation. 

In a recent work, Denissen and Garcia [3] used iterative algorithms in 
the computational image analysis during electrochemical impedance 
spectroscopy tests in order to obtain complementary interpretation for such 
tests, showing the relevance of adequate assessment of the visible changes 
in the materials surface as an evidence of corrosive processes. Other authors 
[4–6] have already used image analysis for measuring corroded areas after 
corrosion tests. Although the successful use of those tools, there are no 
studies regarding the uncertainty of such analyses, from a statistical point of 
view, in salt spray tests.  

Moreover, uncoated bare metal surfaces are not considered by the 
current corrosion evaluation standards. The inspection of the samples is 
usually limited by weight loss and corrosion analyses localized on the scribe 
of painted panels. Iribarren et al. [7] have demonstrated that dark and colored 
iron oxides and oxyhydroxides are associated with advanced carbon steel 
deterioration, due to their non-adherent properties and high permeability to 
ions. Therefore, the use of color evaluation not only allows to distinguish the 
uncorroded and corroded zones, but also indicates the severity of the corrosive 
process which the material has undergone.  

Based on such examples, colors enable the use of image analysis 
tools to measure the fraction of the specimens’ surface affected by corrosion. 

In this work, salt spray tests were carried out with bare plates of four 
different metals: aluminum alloy, copper, carbon steel and galvanized steel. 
These specimens were evaluated periodically using ImageJ software 
(National Institutes of Health, Bethesda, Maryland, USA) in order to quantify 
the area affected by corrosion on each sample and perform the statistical 
analysis of the measurements. The observed results are represented in 
terms of failed area (%) versus the time of salt fog exposition, for each 
material. These plots were used to assess and to compare the 95 % 
confidence intervals (CI), of the means of different datasets [8]. 
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For first time, the statistical reliability of the proposed technique, has 
been addressed. The main aim of such validation is to introduce a novel 
evaluation method in order to obtain high resolution results after conventional 
corrosion tests. The method can be extended to other destructive tests used 
for coatings and surface characterization, such as adhesion tests, blistering 
evaluation, and others. 
 
 
RESULTS AND DISCUSSION 

 
In this section the results obtained for each metal will be discussed 

as an independent analysis because the corrosion products are not the same 
for all samples. As expected, the tested metals demand a particular 
adjustment of parameters for correct selection of the corroded area because 
of the different visual aspects of the corrosion products. 

Aluminum 
Aluminum corrosion product is known to be white; therefore, it can be 

adequately identified by adjusting the brightness threshold. The interval plot of 
the measurements carried out in aluminum samples is depicted in Figure 1. 

 

 
Figure 1. Interval plot of measurements performed in aluminum alloy samples 

using color threshold function on ImageJ. CI means the confidence interval  
of 95 % obtained by statistical analysis. 

Specimen
Time (h)

Al 3Al 2Al 1
644476380164644476380164644476380164

100

80

60

40

20

0

Co
rro

sio
n p

ro
du

cts
 ar

ea
 (%

)

164
380
476
644

Time (h)

Interval Plot of Corrosion products area (%)
95% CI for the Mean



VITOR BONAMIGO MOREIRA, ALEX KRUMMENAUER, JANE ZOPPAS FERREIRA,  
HUGO MARCELO VEIT, ELAINE ARMELIN, ALVARO MENEGUZZI 

 

 
48 

The visual aspect of white aluminum oxide formed changed throughout 
the test duration, being evidently enlarged over increasing salt fog exposition 
time, as can be seen in Figure 2. 

 

 
Figure 2. Aluminum sample (Al 1) during visual analysis a) before the test, b) after 

164 h, c) 380 h, d) 476 h and e) 644 h. The bars correspond to 1 cm. 
 

It is noticeable (Figure 2) that the corrosion products formed above 
the aluminum alloy surface, clearly delineated after 164 h of test, became 
less distinguishable assuming the aspect of the large stains with less 
brightness (light gray in color) in the following measurements. Therefore, the 
reduction of well-defined white oxides may be the reason why the data 
dispersion was increased for 380 h, 476 h and 644 h; resulting in broader 
confidence intervals. Those confidence intervals varied from 2.9 % for 164 h 
to 9.7 % for 644 h, for the sample Al 1; which are the lowest and the highest 
length of CI, respectively, for all measurements carried out in aluminum. 

The comparison between the dispersion observed for Al 1 and Al 3 in 
the 380 h analysis confirms this hypothesis, once Al 3 still has well delineated 
corroded areas at this point, which does not occur with the sample Al 1. 
Comparison of both specimens is shown in the photograph images of Figure 3.  

 

 
Figure 3. Visual aspect of the surface of: a) Al 1 and b) Al 3 specimens,  

after 380 h of exposure on salt spray. 
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Despite the difficulty imposed by the mentioned factor, the corroded 
areas are mostly statistically distinct and significant increases were observed 
for all samples during the test, as expected. 

Figure 4 consists in a graphical comparison between the values 
measured using the ImageJ computer software and the values of corrosion 
grade, obtained with an adapted version of the standard ASTM D610 
(described in the experimental section), for each aluminum sample. 

 

 
Figure 4. Comparison of the computational measure using the ImageJ software 
(above) and the corrosion grade obtained with the standard ASTM D610 (below) 

for aluminum specimens. 
 
The corrosion grade measured for the aluminum specimens 

decreased from 3 to 2 at the first salt spray exposition (164 h), and then 
decreased more slowly until grade 1 at the end of the test. This sharp 
exponential curve decrease traduces in a less accurate measure for the 
samples with more corroded area, once the interval for the failed area does 
not allow differentiating a fine corrosion grade, in the ASTM D610 standard. 
On the other hand, the image analysis by adjusting the brightness for 
identifying the white aluminum oxides offers a linear ascending curve. This 
effect is noticeable during the test at 694 h, as the computational analysis 
provides distinct areas while the visual inspection, following the ASTM D610 
criteria, results in the same corrosion grades for the three samples studied. 
Thus, the computational measure ensures a statistically relevant difference 
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of approximately 20 % in the corroded area of these specimens. This can be 
explained because the standard corrosion grades regard only corrosion up 
to 50 % in total area, so it was expected that for higher corroded areas the 
visual analysis could not provide adequate differentiation. 

Copper 
Considering the testing environment, the possible corrosion products 

from copper and their respective colors are: Cu2O (red); CuO (black); Cu(OH)2 
(blue); and, possibly, CuCl after the replacement of oxygen by chloride ions in 
Cu2O composition, changing it to a yellow colored layer [9,10]. 

The scan images of one copper specimen (Cu 1) are depicted in 
Figure 5. 

 

 
Figure 5. Copper sample (Cu 1) during visual analysis a) before the test, b) after 

476 h, c) 716 h, d) 1052 h and e) 1388 h. The bars correspond to 1 cm. 

In the first exposition time (476 h), remembering that either the salt 
fog spray exposition or the adjustments for the image analysis were not the 
same for each metal, the corrosion products were predominantly light red, 
and they were adequately selected by setting the saturation spectrum and 
allowing the establishment of the appropriate hues and brightness values. 
After 476 h, the predominant color of the corrosion products was a dark 
shade of red, possibly a mixture of CuO and Cu2O, with some blue areas, 
possibly from Cu(OH)2. Those corrosion products are easily distinguished 
from the substrate by the control of the brightness values for all hue and 
saturation spectra. The interval plot for all measurements performed in 
copper samples is presented in Figure 6. 
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Figure 6. Interval plot of the measurements carried out in copper specimens using 

color threshold function on ImageJ. CI means the confidence interval of 95% 
obtained by statistical analysis. 

 
 
 

The clear visual distinction of the corrosion products by color has 
influenced the data dispersion. The three analyzed specimens showed 
significant differences regarding the evolution of the corrosive process 
(Figure 5), but even with the observed differences all samples had a narrow 
data dispersion, indicating the reliability of our analysis method. The lowest 
length of CI for copper samples was observed for Cu 2 after 476 h, which 
was only 0.5 %; while the highest value was obtained for the sample Cu 3, 
5.1 % length of CI. It is also noticeable that there are statistically significant 
differences for all of the points measured for each sample, indicating the 
expected evolution of the corroded area for all the specimens. 

A graphical comparison between the computational image analysis 
and the visual inspection of copper corrosion products by using the adapted 
version of ASTM D610 is shown in Figure 7. 
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Figure 7. Comparison of the computational measure using the  
ImageJ software (above) and the corrosion grade obtained with  

the standard ASTM D610 (below) for copper specimens. 
 
As observed previously in the aluminum specimens (Figure 4), the 

corrosion grade from the ASTM D610 fails again to differentiate samples with 
large corroded areas, while computational image analysis detects significant 
differences between the samples. One example of this evidence is the 
evolution of corrosion in sample Cu 3, which increased only one corrosion 
grade from 716 h to 1388 h after testing. Computational image analysis 
showed that, in the same time interval, this increase corresponds to an 
evolution of approximately 60 % more of copper oxide products respect to 
the total of the corroded area. 

Carbon steel 
The images used for the evaluation of one of the carbon steel samples 

(CS 1) throughout the test can be seen in Figure 8. 
 

 
Figure 8. Carbon steel sample (CS 1) during visual analysis a) before the test,  

b) after 1 h, c) 2 h, d) 3 h and e) 5 h. The bars correspond to 1 cm. 
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For carbon steel samples the HSB color system adjustment fails for 
selecting the darker areas. Therefore, the RGB color system was chosen, 
and it offers a more efficient setting by limiting the green spectrum to a 
desired value and allowing the entire red and blue spectra to be selected, as 
observed experimentally. The interval plot of the performed measurements 
is shown in Figure 9. 

 

 
Figure 9. Interval plot of measurements performed in AISI 1020 steel samples 

using color threshold function on ImageJ. CI means the confidence interval of 95 % 
obtained by statistical analysis. 

 
Carbon steel presents many corrosion products within a wide color 

range. For more details regarding the correlation among the oxides and 
oxyhydroxides products and specific colors, please, refer to the references 
[7,11,12]. The mean value of the corroded area (Figure 9) was higher than 
60 % for all of the analyzed time intervals for all the specimens. These large 
areas did not lead to inconsistent data dispersion, with the lengths of CI being 
very low, between 1.1 % and 4.1 % for all samples. This range of lengths of 
CI is similar to that one observed for copper samples (with exception of Cu 
3). As observed in copper analyses, the high contrast between the corrosion 
products and the bare metal substrate results in a narrow data dispersion 
once the visual distinction is facilitated. 
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The graphical comparison between the proposed technique and the 
visual analysis offered by ASTM D610 of carbon steel specimens is shown 
in Figure 10. 

 
 

 
Figure 10. Comparison of the computational measure using the ImageJ software 

(above) and the corrosion grade obtained by with the standard ASTM D610 
(below) for carbon steel specimens. 

 
 

As can be seen in the Figure 10, the corrosion grade obtained with 
visual analysis (ASTM D610) resulted in no differentiation for large corroded 
areas, reaching the maximum rating number of 1 for any exposition time in 
salt spray test. By contrary, the corroded area measured with the 
computational image analysis indicated an exponential rise of the corroded 
area up to approximately 30 % from 1 h to 5 h of test. Altogether evidence 
that the computational software ImageJ can be used to achieve comparisons 
that are more accurate. 

Galvanized steel 
The corrosion products formed in galvanized steel are initially white, 

corresponding to ZnO molecules, and, after a severe corrosion of the zinc 
layer, red corrosion products are visible as a result of the underlying carbon 
steel corrosion process, as observed in Figure 11, which contains the 
analyzed images of a galvanized steel specimen (GS 1). 
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Figure 11. Galvanized steel sample (GS 1) during visual analysis a) before the 

test, b) after 2 h, c) 5 h, d) 10 h and e) 24 h. The bars correspond to 1 cm. 

For the measurements carried out on galvanized steel specimens, 
the adjustment of the brightness was efficient for selecting the corroded area. 
The resulting interval plots are depicted in Figure 12. 

 

 
Figure 12. Interval plot of measurements performed in galvanized steel samples 

using color threshold function on ImageJ. CI means the confidence interval of  
95 % obtained by statistical analysis. 
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Differently from that observed in aluminum, the white corrosion 
products on galvanized steel do not have a significant change regarding their 
visual aspect, i.e. the corroded areas on galvanized steel are more clearly 
delimited with the evolution of the corrosive process than in aluminum alloy. 
In other words, the specific corroded areas that are visible in the first analysis 
time remain well defined until the end of the test. This has resulted in a 
narrow data dispersion on larger testing times. 

Although some of the measurements for 5 h, 10 h and 24 h in salt fog 
test are statistically equivalent, this is a result of a stabilization in the 
corrosion evolution on the tested specimens. Between 5 h and 24 h the CI 
length did not exceed 4.7 % for all samples, which indicates that even with 
large corroded areas the computational method may provide significant data. 
The lowest and the highest lengths of CI observed for galvanized steel were 
2.3 % and 5.8 %, respectively. 

Figure 13 shows the graphical comparison between both the image 
and the visual analyses, obtained from adapted ASTM 610, for galvanized 
steel specimens. 

 

 
Figure 13. Comparison of the computational measure using the ImageJ software 
(above) and the corrosion grade obtained with the standard ASTM D610 (below) 

for galvanized steel specimens. 
 
If we compare the Figures 8 and 10 (lower plots), it can be seen that 

there are no differences on the evaluation of the corroded area between 
carbon steel and galvanized steel, by using ASTM D610 visual inspection. 
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Nevertheless, the fast increase of corrosion areas from the first measurement 
(65 %, 2 h) towards the second time (88 %, 5 h) in the galvanized samples 
(Figure 13, upper plot) was discriminated by the computational image analysis. 
It corresponds to the elimination of the ZnO layer and the starting of under 
layer corrosion, which is more similar to that reported for the carbon steel 
(Figure 10, upper plot). 
 
 
CONCLUSIONS 

 
The use of a computational image analysis to measure corroded 

areas during salt spray test resulted in higher differentiation between specimens 
with statistically significant difference at 95 % confidence level for all the 
tested metals, if compared to the visual inspection suggested by ASTM D610 
standard. Among the different metal compositions, a clear linear curve of 
corroded area over time was found to aluminum alloy and copper substrates, 
whereas the carbon steel and the galvanized steel showed an exponential 
increase of corrosion rate.  

Thus, for first time, we have demonstrated a reliable and reproducible 
method for the evaluation of corrosion products by contrast, brightness, hue 
and saturation adjustment, after salt spray test, which will undoubtedly enrich 
the interpretation of the data obtained from such assays. 

This technique may enable differentiation in the performance of 
materials that would not be measurable with the conventional evaluation 
methods, providing a quantitative character to such experiment, which is 
typically limited by the intrinsically qualitative aspect of simple visual analysis. 

It must be mentioned that the proposed method is limited by the ability 
of acquiring representative two-dimensional images of the tested surfaces 
with no perspective. In this way, complex three-dimensional shapes inevitably 
introduce misleading inputs, as affected areas may appear smaller with 
increasing distance to the image foreground. Additional image processing or 
alternative image acquisition methods would be necessary to overcome this 
limitation. 

The authors expect to set ground for further developments in the 
improvement of accelerated corrosion analysis, as the technique herein 
described can be applied to other tests, such as immersion or 100 % relative 
humidity tests. This can be also the initial step towards the development of 
automated corrosion evaluation by computational image analysis in 
accelerated corrosion tests. The new insights presented here can be extended 
to other destructive analyses, like those performed on coatings industry (pull-
off test, blistering, rust creepage at scribe, and others). 



VITOR BONAMIGO MOREIRA, ALEX KRUMMENAUER, JANE ZOPPAS FERREIRA,  
HUGO MARCELO VEIT, ELAINE ARMELIN, ALVARO MENEGUZZI 

 

 
58 

 
EXPERIMENTAL SECTION 

 
The metal plates used for this work were: aluminum (AA7075-T6; 80 

mm × 40 mm × 3 mm), copper (UNS – C11000; 100 mm x 40 mm x 1 mm), 
carbon steel (AISI 1020; 100 mm × 50 mm × 1 mm) and galvanized steel 
(100 mm × 50 mm × 1 mm). Three specimens of each metal were tested. 
Individual specimens are referred to throughout this manuscript as: Al #, for 
aluminum alloy; Cu #, for copper; CS #, for carbon steel; GS #, for galvanized 
steel, being # a number from 1 to 3 that refers to the specimen tested. 

Such metals were chosen due to the different surface contrast (by 
color) they present, as well as, due to the different contrast of their corrosion 
products. Aluminum provides a bright gray substrate with the formation of 
white corrosion products, which may not be easily distinguishable by visual 
analysis. Copper, as well as galvanized steel, may form more than one single 
corrosion product. Carbon steel, besides being one of the main structural 
materials for engineering applications, also form different corrosion products, 
with different colors. Therefore, its study is important for a broader application 
of the proposed technique. 

All samples were degreased during 10 minutes at 70 °C with an 
industrial alkaline degreaser (Saloclean 667N – Klintex Insumos Industriais 
Ltda.) and subsequently washed with distilled water to eliminate the excess 
of degreaser agent. 

Salt spray tests were carried out according to ASTM B117 [13]. Four 
analysis times were selected for each metal for the image analysis: 164 h, 
380 h, 476 h and 644 h for aluminum; 476 h, 716 h, 1052 h and 1388 h for 
copper; 1 h, 2 h, 3 h and 5 h for carbon steel; 2 h, 5 h, 10 h and 24 h for 
galvanized steel; and 0 (before salt fog chamber conditioning). Such time 
intervals were defined individually for each material due to the differences in 
their reactivity, so that a wide range of corrosion levels would be measured. 

For the computational image analysis, each specimen was scanned 
using an image scanner (HP Color LaserJet CM1312 MPF - Hewlett-Packard 
Company) as an important tool to eliminate the effect of picture perspective; 
which cannot be neglected if conventional photographs are used. 

For image analysis, the “Color threshold” function was used. The desired 
area was selected and was measured by setting the adequate parameters in 
hue, saturation and brightness (HSB color system), after eliminating the 
edges and holes of the specimens and evaluating the visible corrosion 
products. Specifically, for carbon steel specimens, the Red, Green and Blue 
(RGB) color system was more adequate for selecting the correct areas. This 
measurement was repeated ten times for each sample and time, adjusting 
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manually the parameters for each one of them in order to measure 
experimental error. These parameter adjustments were made for each repetition 
independently, without necessarily matching the previous measurements for the 
same specimen, allowing the evaluation of the experimental variability, shown 
graphically in the interval plots.  

Figure 14 illustrates this procedure for one aluminum plate. 
 

 
 

Figure 14. a) Aluminum sample with white corrosion products after salt spray test;  
b) ImageJ screen during color threshold adjustments for selecting the corroded area  
(in red); c) Parameters adjustments screen for color threshold in HSB color system. 

a)

b)

c)
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The 95 % confidence interval (CI) were calculated using the software 
Minitab 17 (Minitab Inc., USA) by the statistical inference for small samples 
(less than 30 measurements) that uses the t distribution, also referred to as 
Student’s t distribution. These CI are defined by the lower confidence limit 
(LCL) and the upper confidence limit (UCL), which are calculated using the 
Equations [1] and [2], respectively [14]. 

 

n
stxLCL ⋅−=

 
[1] 

n
stxUCL ⋅+=

 
[2] 

 
Where 𝑥̅ represents the sample mean, s stands for the sample standard 

deviation, n is the number of measurements and t is a factor depending on the 
degrees of freedom (ν = n - 1) and the significance level (α). This way, being 
calculated for each sample at each time, the length of the CI is a measurement 
of the precision of the estimate value for the corroded area [14]. 

Each interval plot shows the results for a single material, with three 
analyzed samples and five different exposure times on the salt spray test. 
These plots were generated by the software Minitab 17. The whiskers show 
the lower and upper confidence limits, while the center marker indicates the 
mean value for the group [8]. 

With the lack of adequate standards for evaluating corrosion in 
uncoated bare metal samples, an adapted version of the ASTM D610 
standard [1], which describes the practice for evaluating degree of rusting on 
painted steel surfaces by visual inspection, was used in order to compare to 
the computational image analysis proposed in the present study. The 
adaption of the standard was made comparing the test images of bare plates 
with the standard images for painted plates. Then, the corroded area was 
evaluated as if it was a paint failure area. Each specimen is then associated 
to a corresponding corrosion grade from 10 (0 % of corroded area) to 0 (zero, 
> 50 % of corroded area) in each evaluation time. 
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