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ABSTRACT. The present study introduces a new approach for the quantitative 
structure-activity relationship (QSAR) issue, which can be called a statistically 
intensive or condensed QSAR model. This idea was successfully applied to the 
published data of 32 biologically active molecules derived from 4-(1-aryl-2-oxo-
1,2-dihydro-indol-3-ylideneamino)-N-substituted benzene sulfonamides for 
mixed bacteria and specific bacteria like B.subtilis, E.coli, and S.aureus. The 
suggested four statistically intensive QSAR (SIQSAR) models possess only two 
descriptors with excellent statistical parameters, as their values of the square 
regression coefficient (r2) and cross-validation (q2) are lying within the range of 
0.967−0.997 and 0.961−0.996, respectively. A zero-one correction term (ZO) 
reflects the effect of substituents, which was proposed as a second descriptor 
for two sets of biologically active compounds. In general, the results showed that 
the biological activity is depended majorly on the topographical properties, and 
predominated by the field-effect in contrast to an electronic one. The interesting 
feature of SIQSAR models is their closeness to mathematical methods 
such as simultaneous linear equation method by eliminating the common 
inaccuracy and unrealistic statistical treatments. The obtained SIQSAR 
models were employed for predicting new and efficient biologically active 
molecules derived from isatin.  
 
Keywords: QSAR, computational chemistry, isatin derivatives, biological 
activity, DFT 
 
 
 

INTRODUCTION 
 
Quantitative structure-activity relationship (QSAR) studies can be 

considered as a powerful tool for scientists, particularly for significant assistance 
in reducing trial and error [1−6]. Moreover, utilizing QSAR to assess the biological 
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activity, which is termed in silico might be considered as parallel to that of 
experimental in vivo and in vitro, giving considerable value to this method [2]. 
At the same time, the background of QSAR is statistical rather than an accurate 
mathematical method such as simultaneous linear equation method [7]; 
therefore, researchers who deal with statistical analysis for building up their 
requested models should consider it attentively. In other words, the statistical 
treatments always produce results regardless of the correctness and reliability 
of the provided or input data [8,9]. Furthermore, the outcome of statistical data 
may be meaningless or without physical meaning, as the statistical calculations 
are adjusted by researchers in order to give a good correlation coefficient and 
a lower standard deviation [8−16]. For this reason, the confidence of statistical 
results depends on the number of both descriptors and observations. 
Consequently, the decrease in the number of descriptors increases the 
reliability of the results, while, the decrease in the number of observations 
makes the results less reliable. Thus, selecting the right descriptors can be 
considered as a crucial for building up a suitable model. 

In general, there are thousands of published articles related to biological 
activity, using QSAR [17−22]. Most of QSAR studies are dealing with 
antimicrobial and antifungal activity. No serious efforts have been found for 
adopting models with statistical significance by reducing the number of 
descriptors of the suggested model, including physical meaning. In other 
words, there is always gain combined with loss, as using a few descriptors 
leads to weak statistical parameters. For instance, the square of the correlation 
coefficient (r2) or coefficient of determination cannot exceed 0.937 for two 
descriptors with 14 observations, and a low value of cross-validation (q2) up 
to 0.889 has been found for the same model [23]. Furthermore, the developed 
model by the QSAR model for biological activity and drug design should be 
more accurate than that of toxicity.  

In the present study, efforts have been made to obtain an intensive 
QSAR model from already published data for a set of 32 biologically active 
molecules derived from 4-(1-aryl-2-oxo-1,2-dihydro-indol-3-ylideneamino)-
N-substituted benzene sulfonamides (Scheme 1) [24]. To the best of our 
knowledge, no QSAR models with high statistical and physical significance 
similar to the model presented here, have been found in the literature.  

 

 
Scheme 1. The skeleton of isatin derivatives 
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RESULTS AND DISCUSSION 
 
Table 1 exhibits the estimated properties of isatin derivatives, using 

HF and PM3 calculations. These descriptors, shown in Table 1, were selected 
with regard to the dependency between each other, and according to the 
correlation matrix that was built up for this purpose. The correlation matrix 
that is built up for filtered properties from the correlation issue is illustrated in 
Table 2. It is apparent from the data of this table that the properties belong 
to topography, have the best correlation or dependency with the biological 
activity of isatin derivatives. Therefore, the models were built up with respect 
to these parameters. Indeed, the aim of the present study was to solve the 
QSAR issue, by suggesting an intensive model that is nearly close to accurate 
mathematical methods with excellent regression parameters. Thus, the first 
descriptor was selected in accordance with the simple correlation between 
the biological activities and the adjusted parameters, as exhibited in Table 2. 
According to the values of correlation coefficient (r), a very good correlation 
has been observed for those belonging to the topographical properties such 
as molar refractivity (MR) and Balaban Index (J). However, an additional 
descriptor must be found in order to enhance the efficiency of the model by 
supporting physical and statistical significance. It should be noted that the 
presented training set contains 28 observations, which definitely need multiple 
descriptors for building up the required model. The aim of this study was to 
develop an intensive and reliable model that can be used with confidence. 
Therefore, a second descriptor was added to reinforce the model that already 
contains the first main topographical parameters, as shown in Table 2. For 
those of MICec and MICsa, the model of both consists of two descriptors, 
including cluster count (CCO) together with a molecular topological index 
(MTI), showing excellent statistical parameters, as demonstrated in Table 3. 
This phenomenon could indicate that both of these antimicrobial agents 
(MICec and MICsa) use the same antibacterial mechanism. While for other 
antimicrobial agents (MICab and MICbs), the first descriptor for both is the 
molar refractivity (MR), which also belongs to topography. The suggested 
second descriptor is called zero-one correction term (ZO) that is developed 
with respect to the chemical structure of the molecule of which depends merely 
on substituents. This new proposed descriptor boosts the model from a 
statistical point of view. Indeed, this adopted descriptor has a value of one or 
zero, which could support the physical impact of the model due to the blind 
issue of statistical treatments. The new descriptor, ZO depends on the chemical 
structure of the derivatives, through recognizing the structural effect, according 
to the residuals of predicted values from the simple regression with MR 
descriptor. Hence, a value equal to one will be taken only if there is a structural 
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effect in the substituent. In the presented model, only five observations with 
the structural effect were detected, where the correction term ZO was 
included, which takes the value of one in contrast to the value of zero as no 
correction for the rest of the derivatives. This indicates that only 15.6% of the 
molecules, including both sets of training and test, have two descriptors in 
the suggested model, in comparison to only one descriptor for others. 
However, the structural effect of the correction term includes the field-effect 
that produced from para chlorine of the aryl group, in addition to the presence 
of β,β-dinitrogen with respect to the imine group, as compounds 8, 9, 16, and 
27, and also in the presence of acetyl groups, as compound 30. In other 
words, there is a notable field-effect that resulted from the presence of 
chlorine at the para position of the aryl group, as well as the presence of β,β-
dinitrogen, and acetyl groups with regard to the imine group. Indeed, such a 
phenomenon supports the use of the correct statistical point in understanding 
the substituent effect on the biological activity of molecules. However, we 
cannot give a more in-depth explanation about the effects of substituents for 
the five compounds that required the correction factor.   

Table 3 displays the obtained models for antibacterial activity as the 
MIC for the four types of antimicrobials. We know that the presence of a 
structural effect like ZO has a negative effect on antibacterial activity. Excellent 
statistical parameters for these models were found despite the very low 
number of descriptors that have been used for building up the current models. 
This clearly announces the achievement in developing the QSAR studies. 
The interesting values of cross-validation (q2) as very close to unity, indicate 
the significant confidence of the developed models, which are very close to 
reality. It should be noted that the number of descriptors is less than that 
recommended by the Topliss-Costello rule, with values of r2 and q2 better 
than that recommended by this rule [1]. As mentioned above in the introductory 
section, the value of q2 of previous studies cannot exceed 0.889, in contrast 
to the values of 0.979, 0.996, 0.965, and 0.961 for the current models, 
despite using lower descriptors and more observations [23]. Furthermore, 
the already published QSAR model for 28 observations of presented MICab 
contains one descriptor (molecular connectivity) with r2 and q2 equal to 0.702 
and 0.639, respectively [24]. Such excellent values of QSAR statistical 
properties obtained in this study may be due to the considerable confidence 
that resulted from only two descriptor models of 28 observations. In general, 
the developed models suggest that field-effect plays a major role in the 
biological activity of the selected bacteria. This suggestion is raised from that 
the position of chlorine substituted at the benzene ring of the aryl group, 
giving a remarkable effect to the biological activity, and indicating the high 
efficiency of field-effect in contrast to an electronic one.  



NEWLY DEVELOPED STATISTICALLY INTENSIVE QSAR MODELS FOR BIOLOGICAL ACTIVITY …  
 
 

 
143 

Table 1. The values of selected descriptors used in the regression analysis in 
addition to adopted zero-one correction term (all of these theoretical descriptors 

were estimated, using DFT method, except for those of ƐHOMO and ƐLUMO,  
which are calculated, using the PM3 method 

No. CCO MTI MR J logP PSA ƐHOMO ƐLUMO zero-
one  

Training set         
1 35 29638 128.901 1816557 3.938 117.50 -0.35284 -0.04909 0 
2 32 22508 116.888 1359822 2.762 112.98 -0.37258 -0.04478 0 
3 36 32686 133.506 2083132 3.994 120.63 -0.37091 -0.04570 0 
4 39 40047 142.160 3058009 4.469 139.09 -0.36196 -0.04659 0 
5 37 35317 136.793 2414561 4.288 129.86 -0.34764 -0.04929 0 
6 35 30276 130.153 1816973 4.092 108.27 -0.33533 -0.04799 0 
7 36 31240 133.706 2080770 4.497 117.50 -0.36908 -0.05084 0 
8 37 34402 138.311 2377200 4.552 120.63 -0.35199 -0.04802 1 
9 40 41982 146.965 3455532 5.027 139.09 -0.35069 -0.05352 1 

10 38 37102 141.598 2743970 4.847 129.86 -0.37963 -0.04950 0 
11 36 30974 133.706 2054269 4.497 117.50 -0.36876 -0.05171 0 
12 33 23616 121.693 1555851 3.321 112.98 -0.36556 -0.04888 0 
13 36 31342 133.412 2054706 3.848 120.63 -0.37483 -0.05156 0 
14 37 34124 138.311 2348338 4.552 120.63 -0.34627 -0.04443 0 
15 35 28285 133.459 1784218 4.991 108.27 -0.34851 -0.04737 0 
16 40 41682 146.965 3418784 5.027 139.09 -0.35319 -0.05184 1 
17 38 36818 141.598 2712561 4.847 129.86 -0.37089 -0.05041 0 
18 36 31644 134.958 2054706 4.65 108.27 -0.36676 -0.04836 0 
19 34 26725 121.323 1585232 2.554 126.73 -0.37462 -0.05160 0 
20 31 20085 109.310 1169971 1.378 122.21 -0.36489 -0.05191 0 
21 34 27058 121.029 1585627 1.905 129.86 -0.36455 -0.05813 0 
22 35 29579 125.929 1824777 2.609 129.86 -0.34498 -0.04451 0 
23 33 24293 121.076 1366340 3.049 117.50 -0.36043 -0.04876 0 
24 38 36464 134.583 2705554 3.084 148.32 -0.35137 -0.05120 0 
25 36 32043 129.215 2124021 2.904 139.09 -0.37358 -0.05034 0 
26 34 27329 122.575 1585627 2.708 117.50 -0.36543 -0.04631 0 
27 36 31610 133.412 2081207 3.848 120.63 -0.37672 -0.05464 1 
28 35 28541 133.459 1808479 4.991 108.27 -0.35835 -0.05049 0 

Test set         
29 35 29989 128.607 1816973 3.289 120.63 -0.34537 -0.04565 0 
30 33 23854 121.693 1579399 3.321 112.98 -0.36266 -0.05132 1 
31 34 27032 128.654 1572317 4.433 108.27 -0.37091 -0.04791 0 
32 36 31914 134.958 2081207 4.650 108.27 -0.26135 -0.12206 0 
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Table 2. The correlation matrix of biological activity of mixed antibacterial  
activity (MICab) specified bacteria like B.subtilis (MICbs), E.coli (MICec),  

and S.aureus (MICsa) with the selected descriptors 
 

 MICab MICbs MICec MICsa 
ƐHOMO 0.168 0.152 0.152 0.150 
ƐLUMO -0.289 -0.319 -0.167 -0.146 
logP 0.616 0.458  0.792  0.811 
PSA 0.384 0.325  0.436  0.401 

J 0.805 0.664  0.915  0.899 
CCO 0.793 0.633  0.946  0.939 
MTI 0.772 0.620  0.914 0.905 
MR 0.794  0.623  0.964 0.967 

 
Table 3. The suggested statistical intensive models for antimicrobial activity 

associated with statistical parameters 
 

Eq. no Model r2 q2 S.E. 
1  MICab = 0.990 + 0.00318MR + 0.108 ZO 0.985 0.979 0.007 
2  MICbs = 0.890 + 0.00318 MR + 0.308 ZO 0.997 0.996 0.007 
3  MICec = 0.268 + 0.0508 CCO - 0.000015 MTI 0.971 0.965 0.005 
4  MICsa = -0.034 + 0.0512 CCO - 0.000016 MTI 0.967 0.961 0.006 

 
Figures 1−4 show the linear relationship between estimated and 

observed antibacterial activity resulted from the application of the suggested 
models (Table 3) of both training and test sets for MICab, MICbs, MICec, and 
MICsa, respectively. The relationship of these figures exhibits excellent 
linearity as the coefficient of determination (r2) is equal to 0.986, 0.997, 0.963, 
and 0.959 for MICab, MICbs, MICec, and MICsa, respectively. The residual 
standard error (SE) was calculated using the following equation: 
 𝑺𝑬 = ඨ∑(𝒀 − 𝒀𝒆𝒔𝒕)𝟐𝒏 − 𝟐  
 
where Y is the observed MIC, Yest is the estimated MIC and n is the number 
of observations. The values of SE for the training set of 28 observations are 
quite low, like 0.0073, 0.0073, 0.0053, and 0.0055 for MICab, MICbs, MICec, 
and MICsa, respectively. Indeed, these excellent values of SE demonstrate 
the success of the presented intensive models. In contrast, the values of SE 
get higher when the test set is included, as having values of 0.0211, 0.0075, 
0.0781and 0.0825 for MICab, MICbs, MICec, and MICsa, respectively, which 
is generally may be due to the issue of the correction term.  



NEWLY DEVELOPED STATISTICALLY INTENSIVE QSAR MODELS FOR BIOLOGICAL ACTIVITY …  
 
 

 
145 

In general, the obtained results are quite significant from both 
prediction and statistical points, supporting the success of building up a 
SIQSAR model, as having only two descriptors with 32 observations of the 
presented types of antimicrobials. 

 
Figure 1. The plot of estimated MICab values versus observed MICab values 

according to the developed model 1, presented in Table 3. 
 

 
Figure 2. The plot of estimated MICbs values versus observed MICbs values 

according to the developed model 2, presented in Table 3. 
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Figure 3. The plot of estimated MICec values versus observed MICec values 

according to the developed model 3, presented in Table 3. 
 

 
Figure 4. The plot of estimated MICsa values versus observed MICsa values 

according to the developed model 4, presented in Table 3. 
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The developed SIQSAR models were also used for predicting new 
biologically active compounds derived from isatin, as relatively having more 
efficient activity towards microbial agents. Such a study gives great advantages, 
particularly, in reducing the difficulty of trial and error. Table 4 shows the resulting 
predicted molecules in terms of the lowest MIC values together with their 
theoretically calculated properties. For MICec, no predicted molecule with the 
highest efficiency has been found, in contrast to that of compound number 29 
(MICec =1.29). For other types of antimicrobials, some new derivatives are 
suggested in Table 4. It should be noted that the selection of the predicted 
compounds is not limited to the smallest value of MIC, but considerations 
should also be given to the value of the partition coefficient of the compound 
between water and octanol (logP). The lower the value of logP is, the more 
favored is from a pharmaceutical point of view. For MICab, the minimum MIC 
value is equal to 1.29 (Table 5) with logP equal to 3.289, but the predicted 
molecule is close to this value with lower logP, such as compounds a and c 
(Table 4). While for MICbs, three predicted derivatives have MIC values 
equal to 1.211, 1.217, and 1.223, with comparable logP, in contrast to 
molecule number 20 with MIC value equal to 1.24. Also, for MICsa there are 
three predicted molecules, possessing MIC values equal to 1.162, 1.185, and 
1.189 with lower logP, in comparison with molecule number 20, which has a 
MIC value equal to 1.24. Thus, it is apparent that the developed SIQSAR 
models can be considered as a powerful tool for the prediction of new efficient 
biologically active compounds.  
 

Table 4. The predicted molecules with their calculated properties, acting as 
antimicrobials using the developed models, presented in Table 3. 

 

 Aryl 
group 

R 
group 

MR CCO MTI logP MICab MICbs MICec MICsa 

a 
 

H 100.929 28 14852 1.667 1.311 1.211 1.467 1.162 

b 
 

CH3 105.753 29 16619 1.506 1.326 1.226 1.491 1.185 

c 
 

OH 102.746 29 16153 1.468 1.317 1.217 1.499 1.192 

d 
 

NH2 104.803 29 16386 0.892 1.323 1.223 1.495 1.189 

e 
 

-COH 104.718 30 18084 1.264 1.323 1.223 1.521 1.213 
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CONCLUSIONS 
 
It can be concluded that the present approach of SISQAR for 

developing QSAR can be considered as a powerful tool for multiple linear 
regression studies of activated compounds. This can be attributed to the 
increases in the number of descriptors that decrease the probability of 
obtaining reliable results. The interesting feature of SIQSAR models can be 
deduced from eliminating the common inaccuracy and unrealistic statistical 
treatments, but it is not an accurate method, in contrast to mathematics. The 
application of the current approach to four sets of biologically active molecules 
produces excellent statistical parameters, which have not already obtained 
even using models with more descriptors and fewer observations. The new 
suggested term of SIQSAR may be attributed to any developed QSAR model 
of at least 20 observations, and possess one or two descriptors with excellent 
statistical parameters. Furthermore, the statistical properties that could be 
obtained from SIQSAR models have more efficiency than that of the best 
models, according to the Topliss-Costello rule [1]. Finally, this development in 
solving the QSAR issue shows the potential use of QSAR for drug design and 
biological activity, which requires more accuracy, in comparison with other 
related issues such as toxicity and environmental protection. 

 
 

EXPERIMENTAL SECTION 
 
In the current investigation, the biological activity data showed the 

minimum inhibition concentration (MIC) for a set of thirty-two derivatives of 
isatin (Scheme 1), adopted from the study of Kumar et al. [24]. This set of 
molecules, as illustrated in Table 5, was subdivided into twenty-eight compounds 
as a training set, and the rest four were left as a test set. This included the 
biological activity for the mixed antibacterial activity (MICab) of which was 
performed against Gram-positive bacteria: S. aureus, B. subtilis, and the 
Gram-negative bacteria E. coli and some specified bacteria like B.subtilis 
(MICbs), E.coli (MICec), and S.aureus (MICsa).   

The chemical structures of istain derivatives and their models have 
been drawn, using two- dimensional Chemdraw ultra version 11.0. Each 
molecular structure has been transferred to undergo a systematic energy 
minimization, using Chem 3D-ChemBioOffice software version 16.0.0.82 
(level: Ultra). In order to reach the global minima, the optimization was started 
from molecular mechanics calculations MM2, then MMFF94 methods were 
used to get a value of smaller than 0.1 kcal/mol of the root mean square 
(RMS) gradient [10,15]. The minimization process was continued, using 
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semi-empirical calculations, including Austin Model number 1 (AM1), followed 
by Parameterized Model number 3 (PM3) methods to reach a negative sign 
of heat of formation, and a positive sign of frequency. For density functional 
theory (DFT) calculations, the energy minimizations were continued, using 
DFT at B3LYP level with a 6-311G (d, p) basis set, until the minimum RMS 
gradient of 0.1 was reached [10]. The estimations of descriptors were carried 
out by Gaussian 03w software, using DFT, Hartree–Fock ab initio (HF), and 
PM3 methods (closed-shell MOs), depending on the type of selected 
descriptor. Statistical analysis for QSAR was performed, using Minitab 
software release 14.1. 
 
 

Table 5. The structure of isatin derivatives with their antibacterial activity as 
minimum inhibitory concentration (MIC, l mol/mL), adopted from Kumar et al. [24].  

 

No. of 
compound 

Aryl Group R. Groups MICab MICbs MICec MICsa 

Training set      
1 

 
1.39 1.29 1.59 1.29 

2 

  
1.35 1.25 1.55 1.25 

3 

  

1.40 1.30 1.60 1.30 

4 

  

1.44 1.34 1.64 1.34 

5 
  

1.41 1.31 1.61 1.31 

6 
  

1.39 1.29 1.59 1.29 

7 

 
 

1.42 1.32 1.62 1.32 

8 

  

1.53 1.63 1.63 1.33 

9 

  

1.57 1.67 1.67 1.36 



RABAH ALI KHALIL, SHAYMA'A HASHIM ABDULRAHMAN 
 
 

 
150 

No. of 
compound 

Aryl Group R. Groups MICab MICbs MICec MICsa 

10 

 
 

1.44 1.34 1.64 1.34 

11 

  
1.42 1.32 1.62 1.32 

12 

  
1.39 1.29 1.59 1.29 

13 

  

1.42 1.32 1.62 1.32 

14 

  

1.43 1.33 1.63 1.33 

15 

  

1.42 1.32 1.62 1.32 

16 

 
 

1.57 1.67 1.67 1.36 

17 

  
1.44 1.34 1.64 1.34 

18 

  

1.42 1.32 1.62 1.32 

19 
  

1.38 1.28 1.58 1.28 

20 
  

1.34 1.24 1.54 1.24 

21 
  

1.38 1.28 1.58 1.28 

22 
 

 

1.39 1.29 1.59 1.29 

23 
  

1.38 1.28 1.58 1.28 

24 
 

 

1.43 1.33 1.63 1.33 
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No. of 
compound 

Aryl Group R. Groups MICab MICbs MICec MICsa 

25 
  

1.40 1.30 1.61 1.30 

26 
  

1.38 1.28 1.58 1.28 

27 

  

1.52 1.62 1.62 1.32 

28 

  

1.42 1.32 1.62 1.32 

Test set       
29 

  

1.29 1.29 1.29 1.29 

30 

 
 

1.49 1.59 .59 1.29 

31  
  

 

1.39 
 

1.29 
 

1.59 
 

1.29 

32 

 
 

1.42 1.32 1.32 1.62 
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